

Mechanistic and Pharmacokinetic Considerations to Aid in Determining Causality: New Frontiers for Data Integration

An Updated MOA Analysis for Formaldehyde-Induced Nasal Tumors

Chad Thompson, PhD

Formaldehyde-Induced Cell Proliferation & Nasal Tumors in Rats

MOA for Formaldehyde-Induced Nasal Tumors

Critical Reviews in Toxicology, 36:821-835, 2006
ISSN: 1040-8444 print / 1547-6898 online
DOI: 10.1080/10408440600977669

informa
healthcare

Formaldehyde and Glutaraldehyde and Nasal Cytotoxicity: Case Study Within the Context of the 2006 IPCS Human Framework for the Analysis of a Cancer Mode of Action for Humans

Douglas McGregor

Toxicity Evaluation Consultants, Aberdour, Scotland, United Kingdom

Hermann Bolt

Institut für Arbeitsphysiologie, Dortmund, Germany

Vincent Cogliano

Carcinogen Identification and Evaluation Unit, International Agency for Research on Cancer, Lyon, France

Hans-Bernhard Richter-Reichhelm

Federal Institute for Risk Assessment (BfR), Berlin, Germany

Formaldehyde and glutaraldehyde cause toxicity to the nasal epithelium of rats and mice upon inhalation. In addition, formaldehyde above certain concentrations induces dose-related increases in nasal tumors in rats and mice, but glutaraldehyde does not. Using the 2006 IPCS human framework for the analysis of cancer mode of action (MOA), an MOA for formaldehyde was formulated and its relevance was tested against the properties of the noncarcinogenic glutaraldehyde. These compounds produce similar patterns of response in histopathology and in genotoxicity tests (although formaldehyde has been much more extensively tested studied). The MOA is based on the induction of sustained cytotoxicity and reparative cell proliferation induced by formaldehyde at concentrations that also induce nasal tumors upon long-term exposure. Data on dose dependency and temporal relationships of key events are consistent with this MOA. While a genotoxic MOA can never be ruled out for a compound that is clearly genotoxic, at least *in vitro*, the nongenotoxic properties fundamental to the proposed MOA can explain the neoplastic responses in the nose and may be more informative than genotoxicity in risk assessment. It is not yet fully explained why glutaraldehyde remains noncarcinogenic upon inhalation, but its greater inherent toxicity may be a key factor. The dual aldehyde functions in glutaraldehyde are likely to produce damage resulting in fewer kinetic possibilities (particularly for proteins involved in differentiation control) and lower potential for repair (nucleic acids) than would be the case for formaldehyde. While there have been few studies of possible glutaraldehyde-associated cancer, the evidence that formaldehyde is a human carcinogen is strong for nasopharyngeal cancers, although less so for sinonasal cancers. This apparent discrepancy could be due in part to the classification of human nasal tumors with tumors of the sinuses, which would receive much less exposure to inhaled formaldehyde. Evaluation of the human relevance of the proposed MOA of formaldehyde in rodents is restricted by human data limitations, although the key events are plausible. It is clear that the human relevance of the formaldehyde MOA in rodents cannot be excluded on either kinetic or dynamic grounds.

Keywords: Cytotoxicity, DPX, Formaldehyde, Gene Expression, Genotoxicity, Glutaraldehyde, Human Studies, Inhalation, Mode of Action, Nasal Pathology, Nasal Tumors, Rats

This publication contains the collective views of an international group of experts and does not necessarily represent the decisions or the stance of the World Health Organization.

©Copyright World Health Organization (WHO), 2006. All rights reserved. The World Health Organization has granted the publisher permission to reproduce this article.

Address correspondence to Douglas McGregor, Toxicity Evaluation Consultants, 38 Shore Road, Aberdour, KY3 0TU, Scotland, UK. E-mail: mcgregortec@btconnect.com

TABLE 3
Formaldehyde concordance table

Key event	Evidence in animals	Evidence in humans
Cytotoxicity	Positive <i>in vivo</i> (target cells)	Plausible
Proliferation	Positive <i>in vivo</i> (target cells)	Plausible (some evidence but confounded by coexposure)
Genotoxicity	DPX (target cells <i>in vivo</i>)	DPX (nontarget cells, ie lymphocytes)
Mutations	Positive <i>in vitro</i> ; unconvincing <i>in vivo</i>	Positive (? cells)
Nasal tumors	Positive (mainly anterior lateral meatus)	Positive (nasopharyngeal) ? (sinonasal)

MOA for Formaldehyde-Induced Nasal Tumors

Critical Reviews in Toxicology, 36:821-835, 2006
ISSN: 1040-8444 print / 1547-6898 online
DOI: 10.1080/10408440600977669

informa
healthcare

Formaldehyde and Glutaraldehyde and Nasal Cytotoxicity: Case Study Within the Context of the 2006 IPCS Human Framework for the Analysis of a Cancer Mode of Action for Humans

Douglas McGregor

Toxicity Evaluation Consultants, Aberdour, Scotland, United Kingdom

Hermann Bolt

Institut für Arbeitsphysiologie, Dortmund, Germany

Vincent Cogliano

Carcinogen Identification and Evaluation Unit, International Agency for Research on Cancer, Lyon, France

Hans-Bernhard Richter-Reichhelm

Federal Institute for Risk Assessment (BfR), Berlin, Germany

Formaldehyde and glutaraldehyde cause toxicity to the nasal epithelium of rats and mice upon inhalation. In addition, formaldehyde above certain concentrations induces dose-related increases in nasal tumors in rats and mice, but glutaraldehyde does not. Using the 2006 IPCS human framework for the analysis of cancer mode of action (MOA), an MOA for formaldehyde was formulated and its relevance was tested against the properties of the noncarcinogenic glutaraldehyde. These compounds produce similar patterns of response in histopathology and in genotoxicity tests (although formaldehyde has been much more extensively tested studied). The MOA is based on the induction of sustained cytotoxicity and reparative cell proliferation induced by formaldehyde at concentrations that also induce nasal tumors upon long-term exposure. Data on dose dependency and temporal relationships of key events are consistent with this MOA. While a genotoxic MOA can never be ruled out for a compound that is clearly genotoxic, at least *in vitro*, the nongenotoxic properties fundamental to the proposed MOA can explain the neoplastic responses in the nose and may be more informative than genotoxicity in risk assessment. It is not yet fully explained why glutaraldehyde remains noncarcinogenic upon inhalation, but its greater inherent toxicity may be a key factor. The dual aldehyde functions in glutaraldehyde are likely to produce damage resulting in fewer kinetic possibilities (particularly for proteins involved in differentiation control) and lower potential for repair (nucleic acids) than would be the case for formaldehyde. While there have been few studies of possible glutaraldehyde-associated cancer, the evidence that formaldehyde is a human carcinogen is strong for nasopharyngeal cancers, although less so for sinonasal cancers. This apparent discrepancy could be due in part to the classification of human nasal tumors with tumors of the sinuses, which would receive much less exposure to inhaled formaldehyde. Evaluation of the human relevance of the proposed MOA of formaldehyde in rodents is restricted by human data limitations, although the key events are plausible. It is clear that the human relevance of the formaldehyde MOA in rodents cannot be excluded on either kinetic or dynamic grounds.

Keywords: Cytotoxicity, DPX, Formaldehyde, Gene Expression, Genotoxicity, Glutaraldehyde, Human Studies, Inhalation, Mode of Action, Nasal Pathology, Nasal Tumors, Rats

This publication contains the collective views of an international group of experts and does not necessarily represent the decisions or the stance of the World Health Organization.

©Copyright World Health Organization (WHO), 2006. All rights reserved. The World Health Organization has granted the publisher permission to reproduce this article.

Address correspondence to Douglas McGregor, Toxicity Evaluation Consultants, 38 Shore Road, Aberdour, KY3 0TU, Scotland, UK. E-mail: mcgregortec@btconnect.com

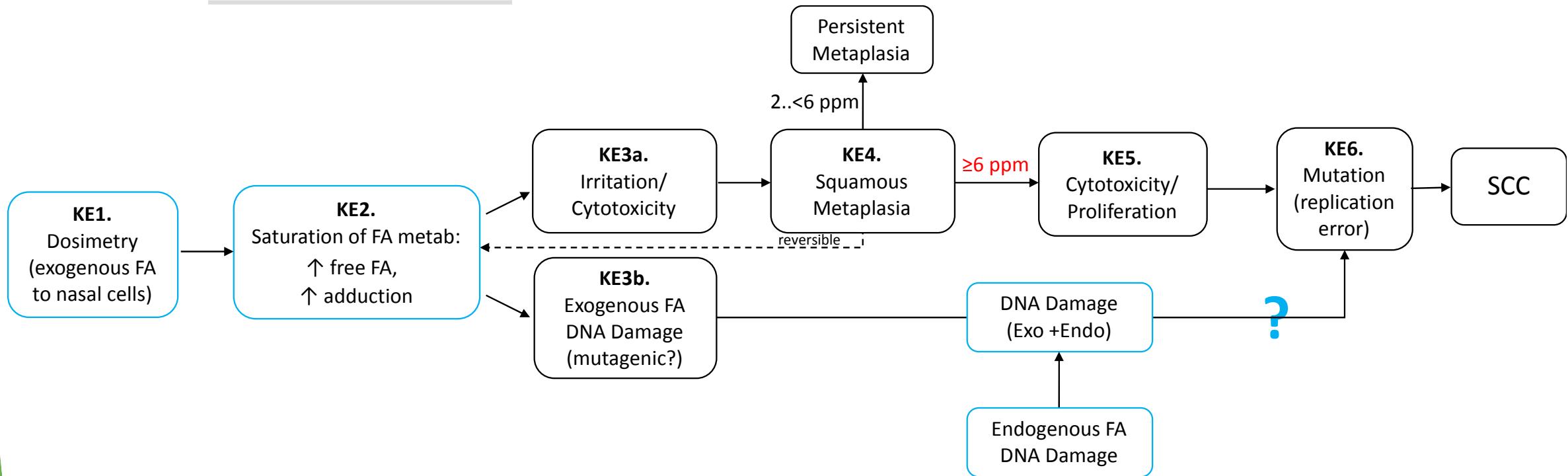
TABLE 3
Formaldehyde concordance table

Key event	Evidence in animals	Evidence in humans
Cytotoxicity	Positive <i>in vivo</i> (target cells)	Plausible
Proliferation	Positive <i>in vivo</i> (target cells)	Plausible (some evidence but confounded by coexposure)
Genotoxicity	DPX (target cells <i>in vivo</i>)	DPX (nontarget cells, ie lymphocytes)
Mutations	Positive <i>in vitro</i> ; unconvincing <i>in vivo</i>	Positive (? cells)
Nasal tumors	Positive (mainly anterior lateral meatus)	Positive (nasopharyngeal) ? (sinonasal)

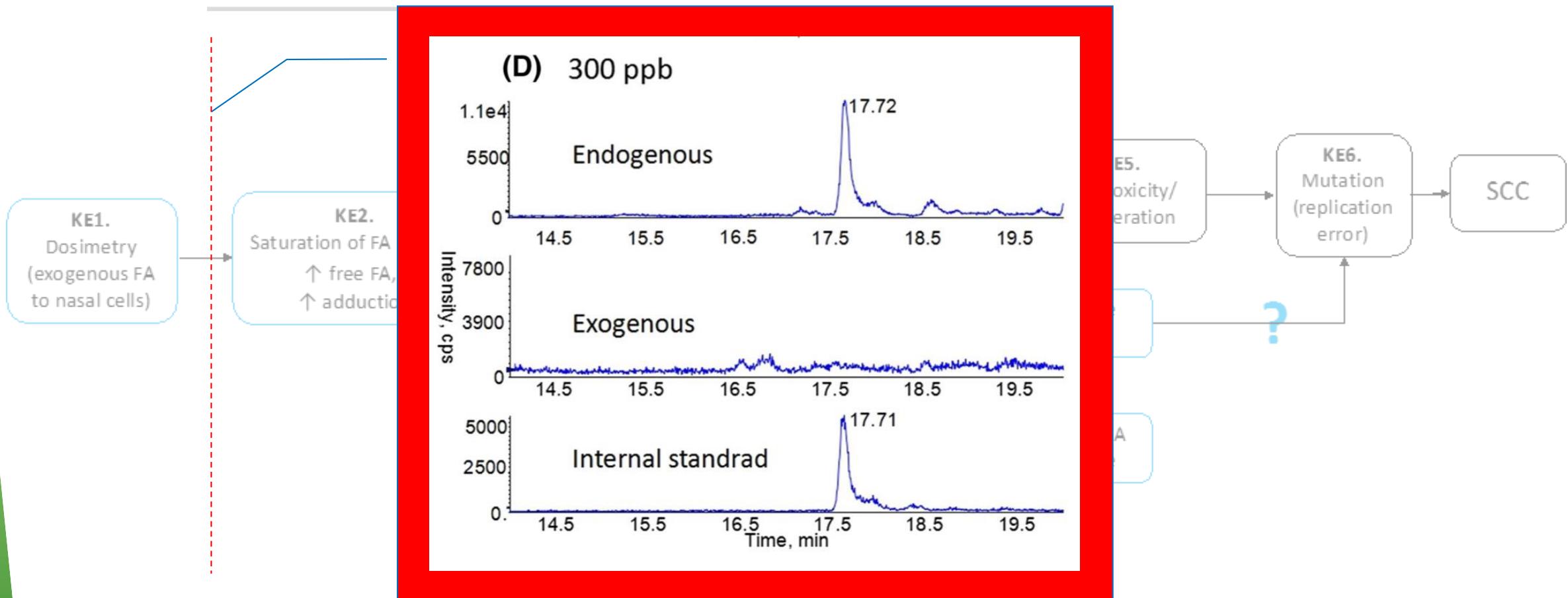
Uncertainties Regarding the Role of Genotoxicity

- Prolonged exposure to formaldehyde above a critical concentration induces sustained cytotoxicity and cell proliferation. **As a result of genetic changes within this proliferating cell population, neoplasia emerges.**
- Formaldehyde is a genotoxic substance in vitro and forms DNA–protein cross-links (DPX) ... **Apart from the abundance of DPX observations in rats, there is little evidence that formaldehyde is mutagenic to mammalian cells in vivo.**
- There is the possibility that mutagenicity could play a role in the development of formaldehyde-induced tumors... **but is generally not genotoxic in standard in vivo assays...**

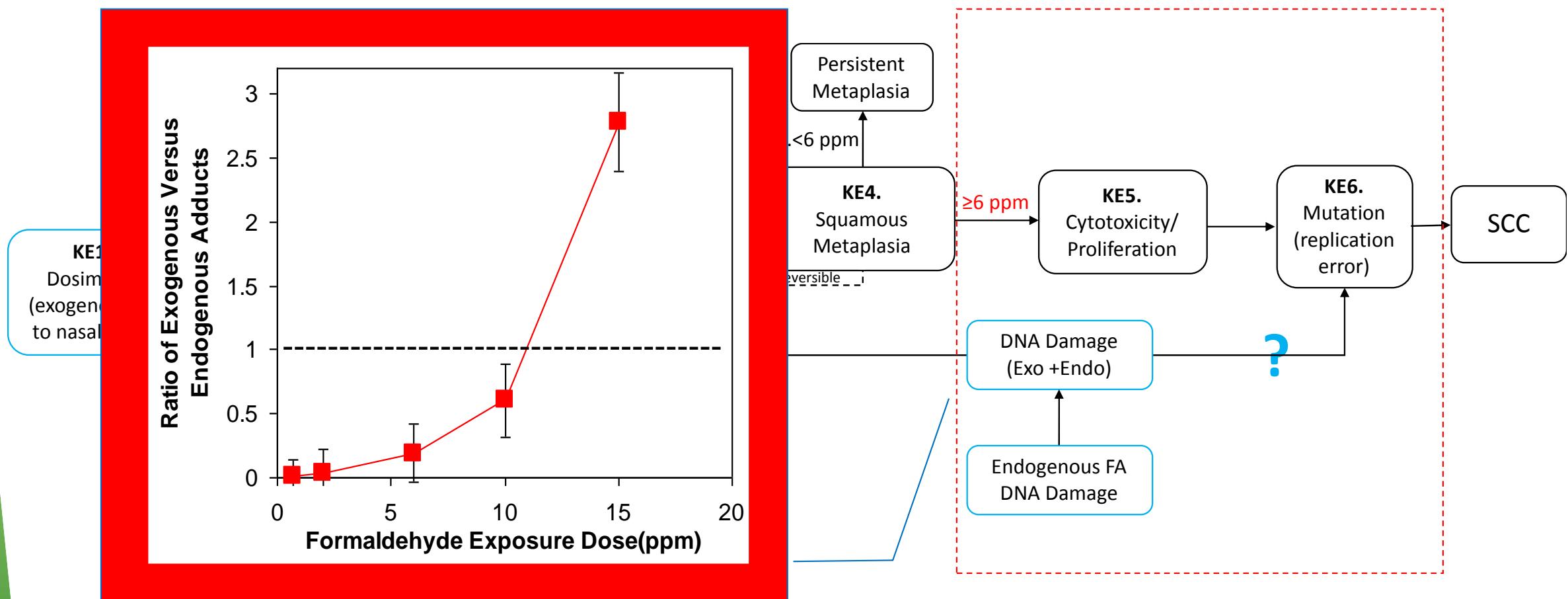
Uncertainties Regarding the Role of Genotoxicity


- Prolonged exposure to formaldehyde above a critical concentration induces sustained cytotoxicity and cell proliferation. **As a result of genetic changes within this proliferating cell population, neoplasia emerges.**
- Formaldehyde is a genotoxic substance in vitro and forms DNA–protein cross-links (DPX) ... **Apart from the abundance of DPX observations in rats, there is little evidence that formaldehyde is mutagenic to mammalian cells in vivo.**
- There is the possibility that mutagenicity could play a role in the development of formaldehyde-induced tumors... **but is generally not genotoxic in standard in vivo assays...**

New Data Published After 2006

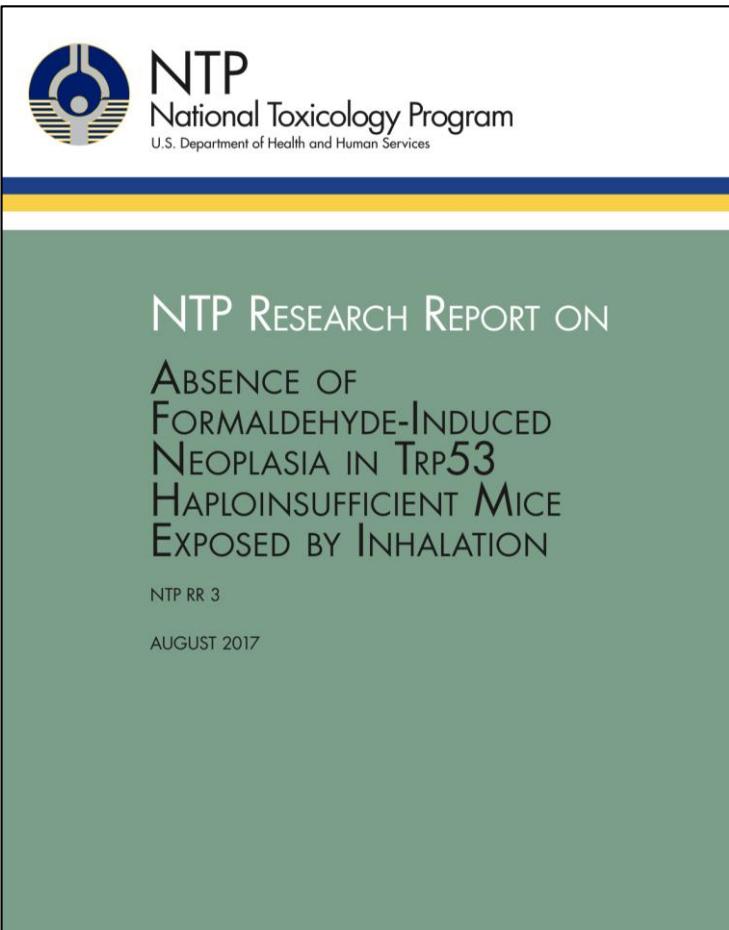

- Heavy isotope labelling
 - Distinguish endogenous and exogenous adducts
- In vivo genotoxicity assays in nasal cavity
 - Mutant frequency (MF)
 - Micronuclei (MN)
- Mouse models
 - $p53^{+/-}$ exposure study conducted by NTP
 - $Adh5^{-/-}$ mice deficient in FDH
Measured FA-DNA adducts in $Adh3^{-/-}$
 - $Adh5^{-/-}$ /Big Blue mice

MF data


Updated MOA (2020)

Updated MOA (2020) – Potential Dosimetry Threshold

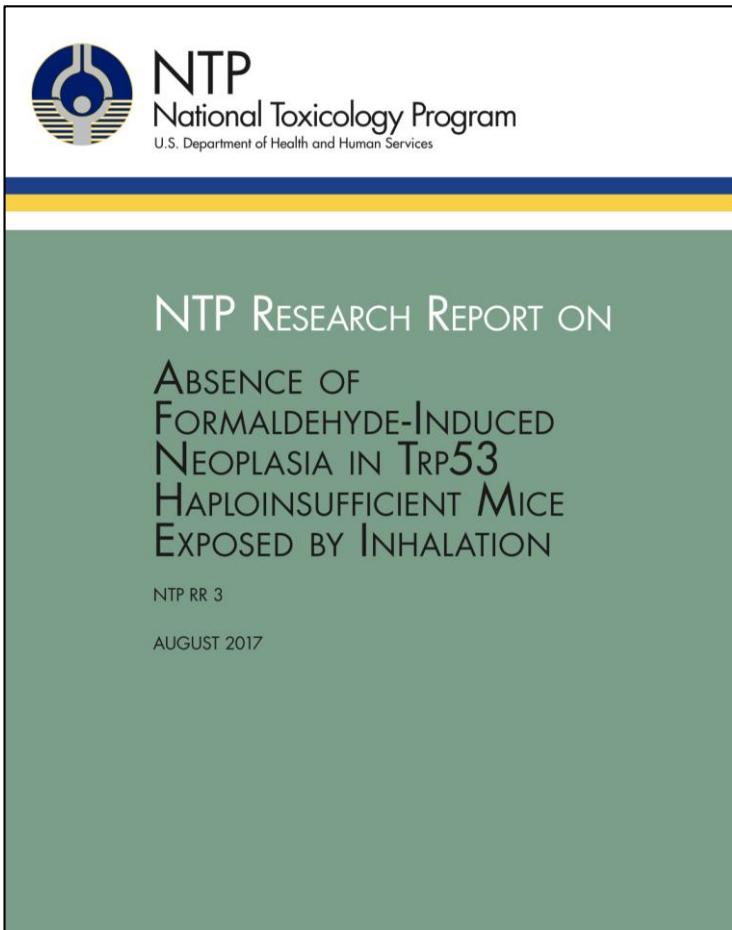
Updated MOA (2020) – Focus of this Talk



Next Series of Slides

- Discuss 2017 NTP study in p53^{+/-} mice
 - No increase in nasal tumors
- Discuss relevant studies in genetically modified mouse models
 - Loss of formaldehyde detoxification increases DNA adducts
 - Loss of formaldehyde detoxification does no lead to increased mutations
- Discuss more traditional *in vivo* genotoxicity results in rats
 - No increase in mutagenic and clastogenic endpoints in nasal cavity

NTP Study (2017) Inhalation Study in p53⁺⁻ Mice



“Considerable evidence shows that formaldehyde-induced mutations in the tumor suppressor gene Trp53 are important in the pathogenesis of nasal cancer .”

“Mutations in Trp53 were identified in formaldehyde-induced nasal SCC in rats, and abnormal Trp53 protein was shown to accumulate in the nasal tissue of formaldehyde-exposed rats.”

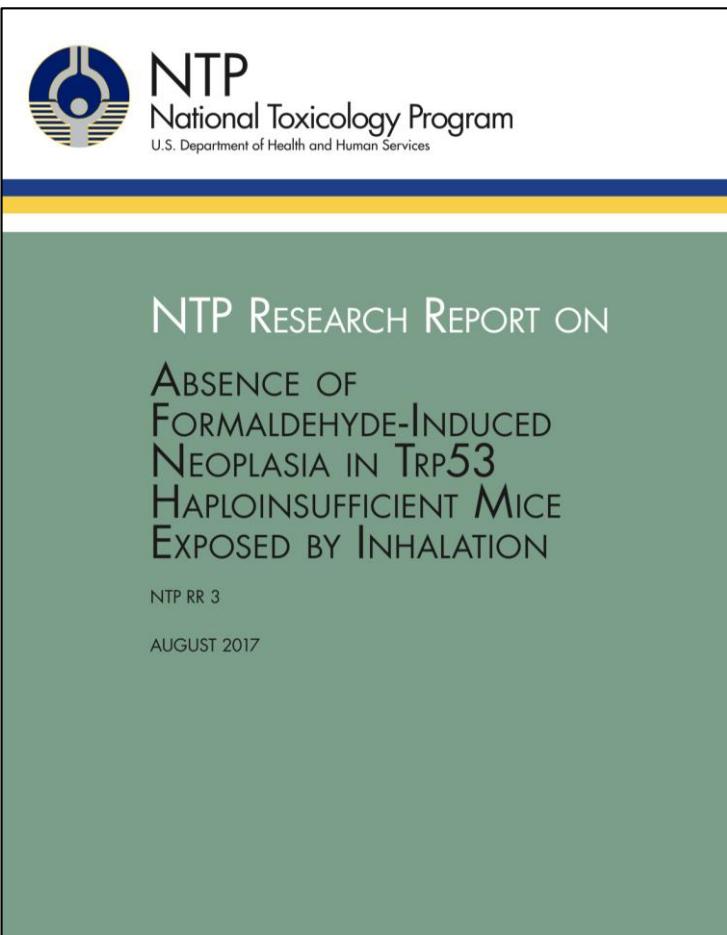
“We hypothesized that formaldehyde-induced loss of Trp53 would be increased in Trp53⁺⁻ mice, resulting in an increased incidence of SCC of the nose and leukemia or lymphohematopoietic cancer, and potentially neoplasms at other sites.”

NTP Study (2017) Inhalation Study in p53⁺⁻ Mice

Exposures: 0, 7.5, & 15 ppm

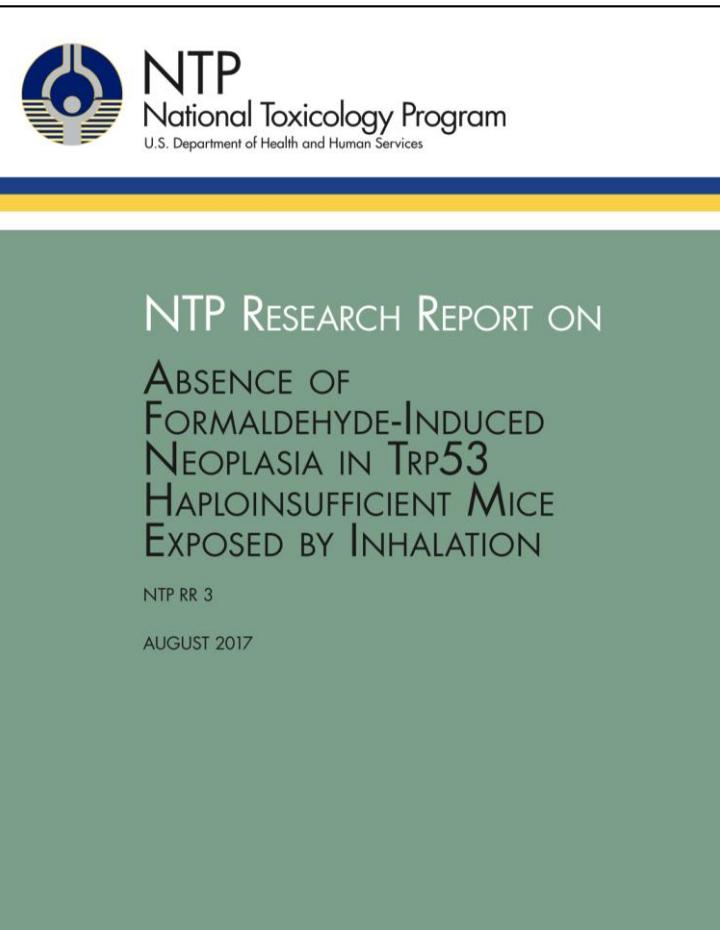
6 hr/day, 5d/wk x 8-wk

Held to ~50 weeks old:


- \cong 32 wk latency
- **25 mice per group (p53⁺⁻)**
- Two different strains of p53⁺⁻ mice
- These strains are used to test genotoxic carcinogens

Endpoints:

- Histopathology
- Hematology
- Bone marrow smears


*Note: RD₅₀ in mice at ~3 ppm

No Increase in Nasal SCC

Endpoint	0 ppm	7.5 ppm	15 ppm
C3B6.129F1-Trp53 ^{tm1Brd}			
squamous metaplasia	0/21	14/21	22/23
hyperplasia	0/21	0/21	1/23
SCC	none	none	none
B6.129-Trp53 ^{tm1Brd}			
squamous metaplasia	0/22	13/27	17/26
SCC	none	none	none

No Increase in Nasal SCC

Endpoint	0 ppm	7.5 ppm	15 ppm
C3B6.129F1-Trp53 ^{tm1Brd}			
squamous metaplasia	0/21	14/21	22/23
hyperplasia	0/21	0/21	1/23
SCC	none	none	none
B6.129-Trp53 ^{tm1Brd}			
squamous metaplasia	0/22	13/27	17/26
SCC	none	none	none

NTP: "The results of this short-term carcinogenicity study do not support a role for *Trp53* in formaldehyde-induced neoplasia."

Implications of the NTP (2017) Study

- Squamous metaplasia indicates dosimetry to target tissue and irritation to the nasal mucosa
- Lack of hyperplasia indicates that metaplasia was protective of further damage
- We don't know the exogenous adduct levels in mice exposed to formaldehyde, but based on rat data, adducts were likely present but below endogenous levels
- **Lack of SCC does not support low-dose genotoxicity**

Endpoint	0 ppm	7.5 ppm	15 ppm
C3B6.129F1-Trp53 ^{tm1Brd}			
squamous metaplasia	0/21	14/21	22/23
hyperplasia	0/21	0/21	1/23
SCC	none	none	none
B6.129-Trp53 ^{tm1Brd}			
squamous metaplasia	0/22	13/27	17/26
SCC	none	none	none

Formaldehyde Dehydrogenase Knockout Models

1. Formaldehyde Metabolism

- Formaldehyde dehydrogenase (FDH)
- Alcohol dehydrogenase (*Adh3*) in rodents
- *Adh5* in humans
 - Oxidizes formaldehyde to formate
 - GSH, NAD+

2. Nitric Oxide (NO) Homeostasis

- GSNO reductase (GSNOR)
 - Reduces GSNO to S-(N-hydroxyamino)glutathione
 - Regulates NO signaling & protein S-nitrosylation
- GSH, NADH

REPORTS

Protective Experimental Endogenous B

Loretta G. Que,¹ Limin Liu,^{1,2} Yu Stephen H. Gavett,⁴ David A. Schatz,¹

Mechanisms that protect against airway hyperresponsiveness (AHR) and chronic airway inflammation, is centered on the role of bronchoconstrictor substances and inflammatory mediators (1–3). The role of endogenous airway relaxants in the pathogenesis of asthma has received less attention, and the relative importance of impaired airway relaxation versus active contraction is unknown.

The current understanding of allergic asthma, characterized by airway hyperresponsiveness (AHR) and chronic airway inflammation, is centered on the role of bronchoconstrictor substances and inflammatory mediators (1–3). The role of endogenous airway relaxants in the pathogenesis of asthma has received less attention, and the relative importance of impaired airway relaxation versus active contraction is unknown.

Nitric oxide (NO) has been implicated in the regulation of airway tone (4), and elevated levels of NO in the exhaled breath are a signature of asthma (5, 6), attributed in part to up-regulation of cytokine-inducible NO synthase (iNOS) within the airways (7–10). However, neither genetic deletion of iNOS in mice nor pharmacological inhibition of NO synthase has provided significant protection against AHR (7, 10, 11). Furthermore, animals deficient in NO synthase that are expressed constitutively in the lung (eNOS, nNOS, and iNOS) do not exhibit increases in airway tone or AHR (7).

Accumulating evidence indicates that NO bioactivity is conveyed primarily through the covalent modification of cysteine sulfurs by NO to form S-nitrosothiols (SNOs) (12–14). Of these, S-nitrosothiols (GSNO) represents a major source of broncholatory NO bioactivity (airway concentrations of GSNO are much higher than those of NO) (15), and abnormal metabolism of GSNO (reflecting altered NOS activity) has been described in several lung diseases (15–17). Paradoxically,

¹Department of Medicine, ²Howard Hughes Medical Institute, and ³Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA. ⁴Experimental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

*To whom correspondence should be addressed: STAML001@mc.duke.edu

1618

S-nitrosoglutathione reductase deficiency mouse liver

James Leung, Wei Wei and Limin Liu*

Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA

*To whom correspondence should be addressed: 513 Parmassus HSE-2011, San Francisco, CA 94143. Tel: +415-476-1466; Fax: +415-502-4995; Email: Limin.Liu@ucsf.edu

In human hepatocellular carcinoma (HCC) and in cancers, somatic point mutations are highly prevalent mechanisms critical in their generation remain poorly understood. *S*-nitrosoglutathione reductase (GSNOR), a major protein of protein S-nitrosylation, is frequently deficient in HCC. Targeted deletion of the GSNOR gene in mice increases the activity of the DNA repair protein O^6 -alkylguanine alkyltransferase (AGT) and promotes both carcinogenesis and spontaneous HCC. In this study, we report that exposure to the environmental carcinogen diethylnitrosamine (DEN) increases the frequency of a transversion, G to T, in GSNOR-deficient mice (*Adh5*^{−/−}), significantly higher than in wild-type control. In wild-type mice, diethylnitrosamine treatment does not significantly increase the frequency of transition from G:C to A:T, a mutation deriving from transamine-induced O^6 -ethylguanines that are normal by AGT. In contrast, the frequency of this transition in nitrosamine-treated *Adh5*^{−/−} mice is significantly increased (~20 times in GSNOR^{−/−} mice). Diethylnitrosamine also significantly increases the frequency of a transversion from A:T to T:A, a mutation not affected by AGT. In contrast, the frequency of this transition in nitrosamine-treated *Adh5*^{−/−} mice is significantly increased (~20 times in GSNOR^{−/−} mice). Diethylnitrosamine also significantly increases the frequency of a transversion from A:T to T:A, a mutation not affected by AGT. In contrast, the frequency of this transition in nitrosamine-treated *Adh5*^{−/−} mice is significantly increased (~20 times in GSNOR^{−/−} mice).

Introduction

DNA sequencing of cancer genomes has revealed remarkable numbers of somatically acquired mutations in many human cancers (1). These mutations, occurring in both protein-coding regions throughout the cancer genomes, are mostly single nucleotide substitutions. There are for instance over 11 000 somatic mutations in a typical hepatocellular carcinoma (HCC) (2). The genome-wide distribution of somatic mutations is highly heterogeneous (2–4). The distribution of heterozygous mutations is also substantial within individual tumors. The characteristic abundance and substantial heterogeneity of mutations in cancer genomes have profound implications for carcinogenesis and therapeutic approaches. However, defects in DNA repair systems have only been observed in limited cancer incidences, and the causes and mechanisms of somatic mutations remain largely unknown in HCC and other cancers.

Abbreviations: AGT, O^6 -alkylguanine-DNA alkyltransferase; DEN, diethylnitrosamine; GSNOR, *S*-nitrosoglutathione reductase; HCC, hepatocellular carcinoma; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NADH, reduced nicotinamide adenine dinucleotide; ROS, reactive oxygen species; SNO, S-nitrosothiols.

© The Author 2013. Published by Oxford University Press. All rights reserved.

allergen ovalbumin (OVA) (21) (Fig. 1A). As

Molecular Cell Article

Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen

Lucas B. Pontel,^{1,2} Ivan V. Rosado,^{1,2,3} Guillermo Burgos-Barragan,¹ Juan I. Garaycochea,¹ Rui Yu,² Mark J. Arends,⁴ Gautam Chander
and Ketan J. Patel,^{1,2*}

¹MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK

²Instituto de Biomedicina de Sevilla (IBIS) Hospital Universitario Virgen del Rocío/CSCS/Universidad de Sevilla, 41013 Sevilla, Spain

³Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA

⁴University of Edinburgh Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK

⁵Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 2QH, UK

⁶Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 2QH, UK

⁷Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA

⁸Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QH, UK

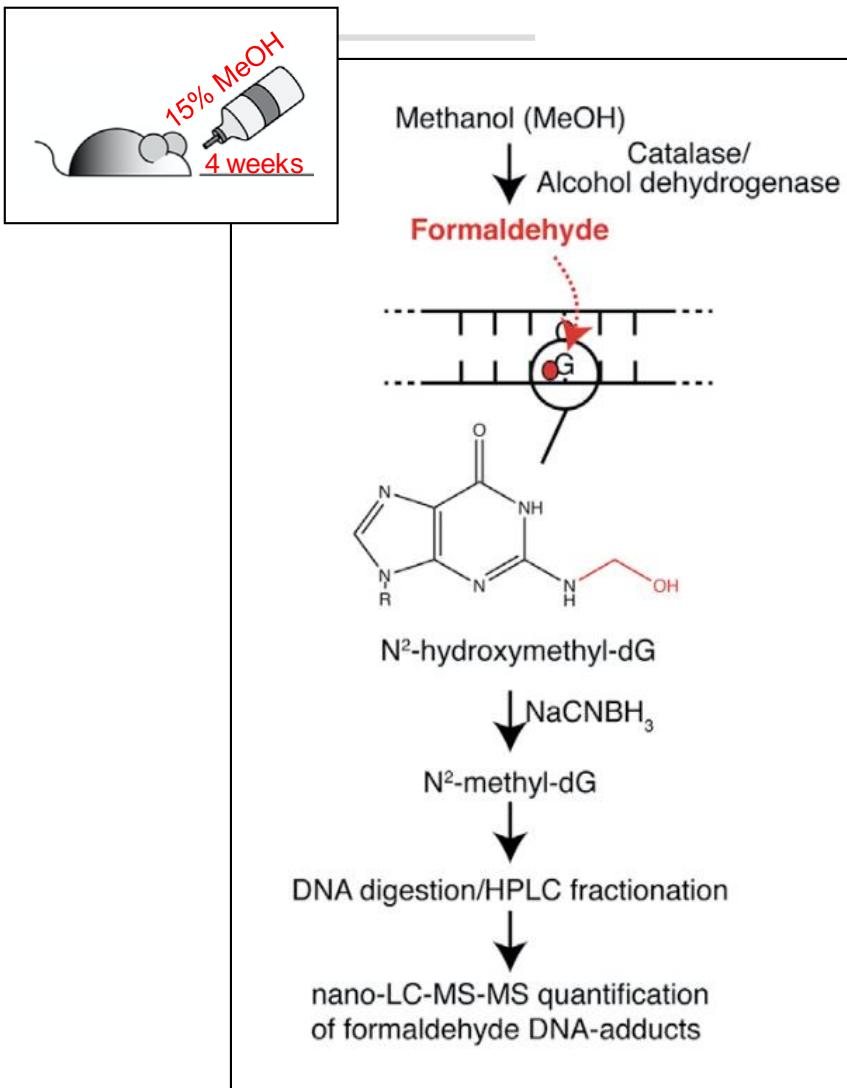
*Co-first author

¹Correspondence: kjp@mrc-lmb.cam.ac.uk

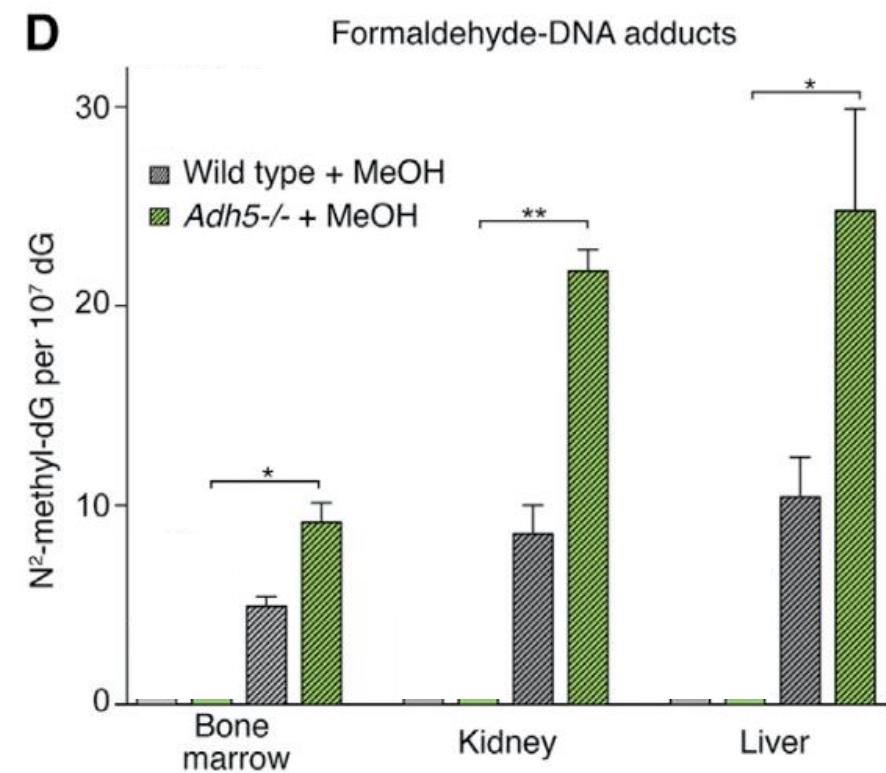
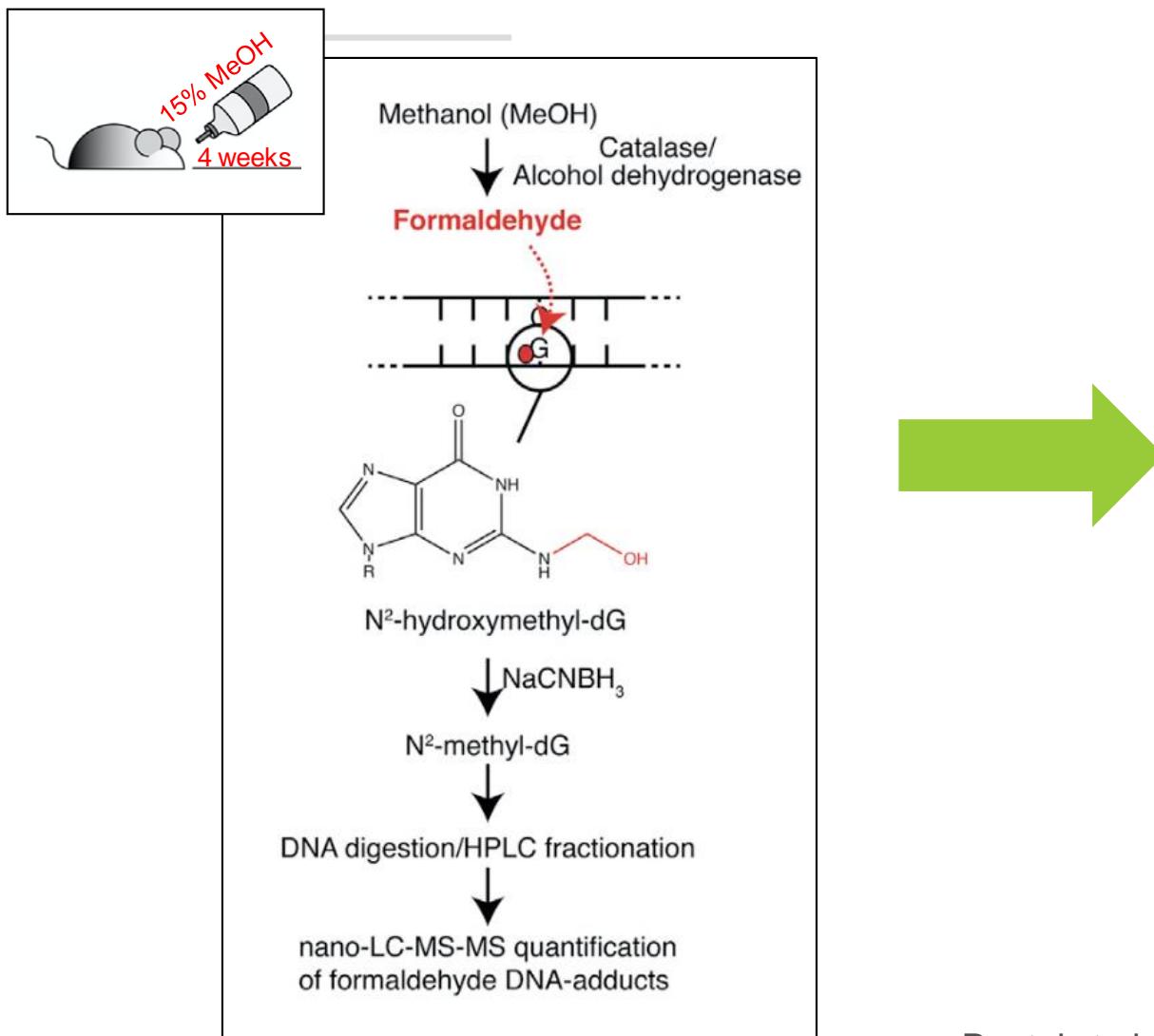
<http://dx.doi.org/10.1016/j.molcel.2015.08.020>

This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

SUMMARY

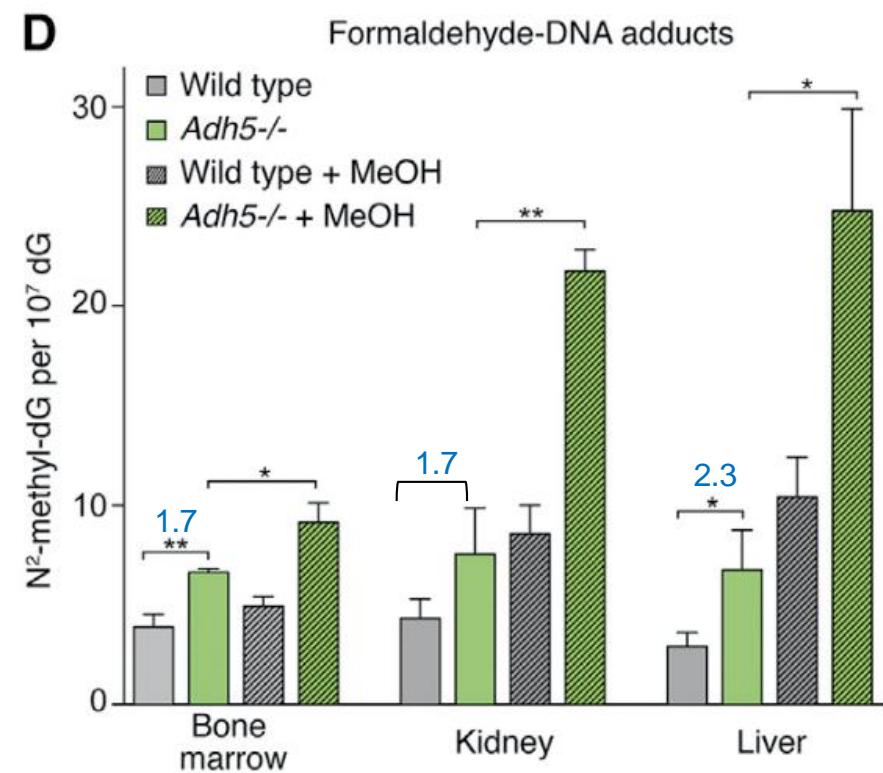
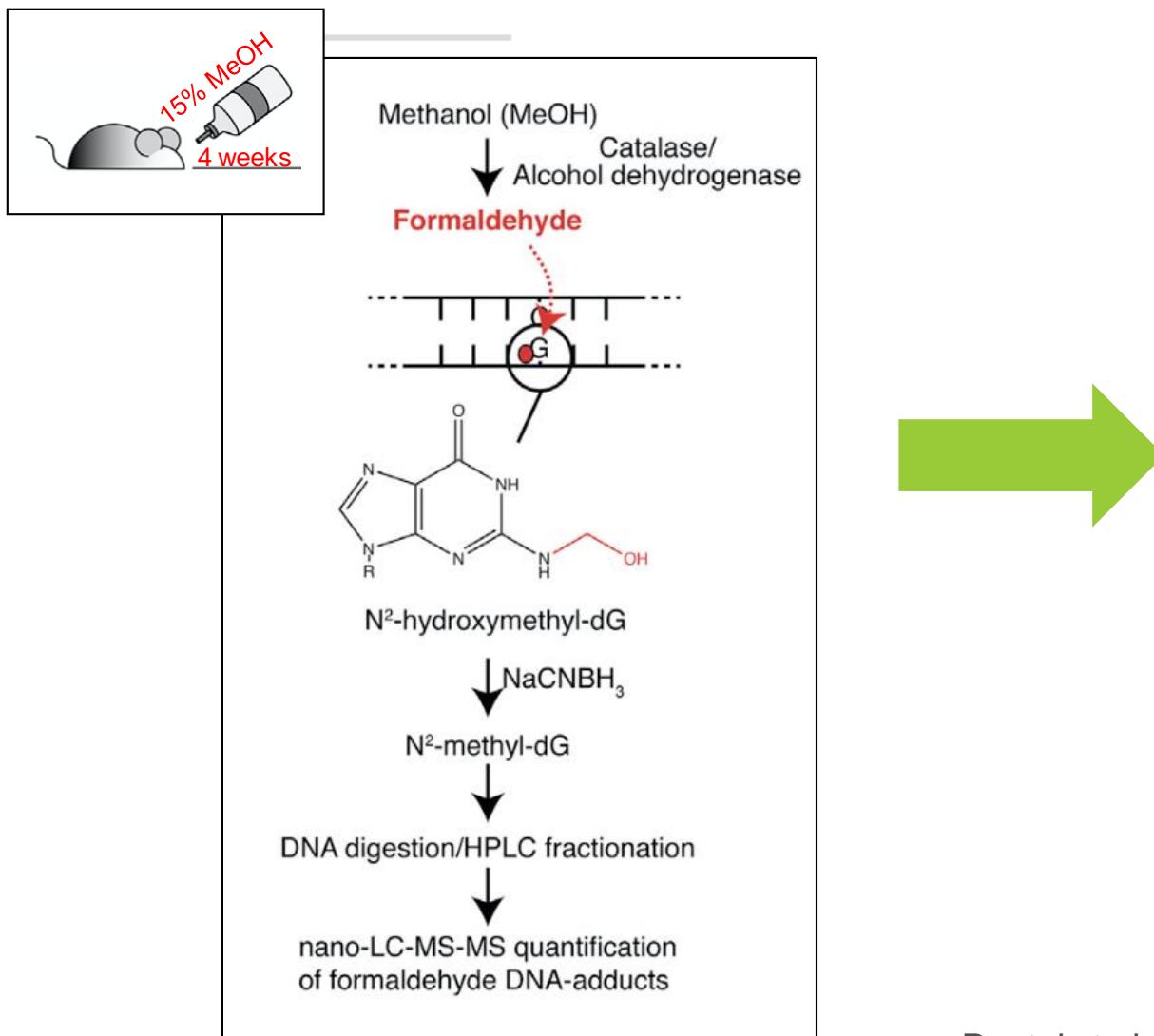

Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and *Adh5*^{−/−} mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. *Adh5*^{−/−} *Fancd2*^{−/−} mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism.

The human genetic disease Fanconi anemia (FA) results from an inability to deal with certain forms of DNA damage. The accumulation of DNA damage in FA leads to bone marrow failure, developmental abnormalities, sterility, and a predisposition to develop cancer. The endogenous factors that cause this phenotype are the focus of current research, with evidence pointing to two contrasting sources. The first comes from mice and humans afflicted with FA, who simultaneously lack the acetaldehyde-catabolizing enzyme ALDH2 (Garaycochea et al., 2012; Hirao et al., 2013; Langen et al., 2011). This combined deficiency greatly accelerates hematopoietic stem cell (HSC) attrition and the onset of leukemia. These mice are sensitized to ethanol, indicating that an accumulation of acetaldehyde is sufficient to produce HSC loss. The second comes from a very recent study on FA-deficient mice, which were stimulated to induce stress-driven hemopoiesis (Walter et al., 2015). This experimental manipulation led to an increase in HSC cycling, induction of ROS, and an accumulation of oxidative DNA lesions. These two disparate drivers of endogenous DNA damage are not linked, so it is unclear what exactly the FA DNA repair pathway responds to in the physiological setting. Moreover, it raises questions concerning the main cause of HSC attrition in FA and which endogenous factor causes it.

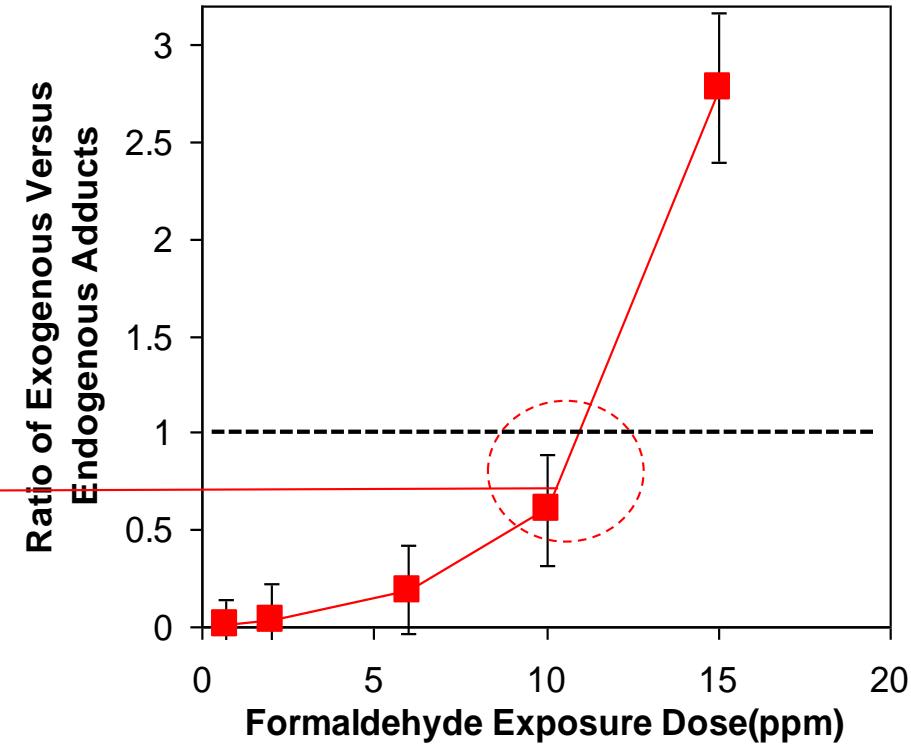
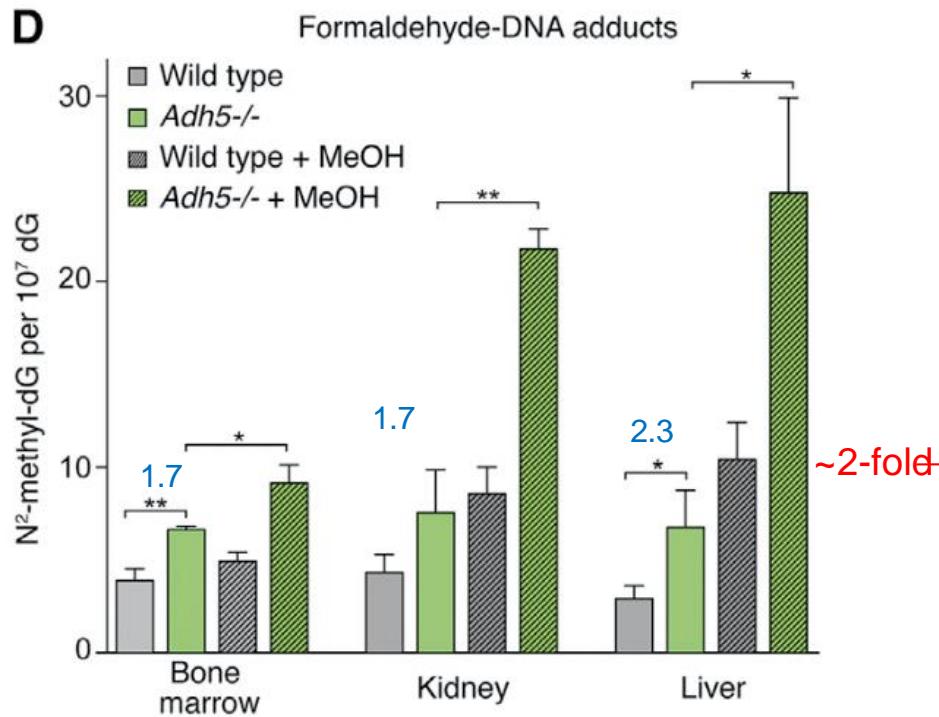


INTRODUCTION

Chromosomal DNA is intrinsically unstable. The nuclear environment leads to spontaneous base decomposition through processes such as deamination (e.g., converting cytosine bases

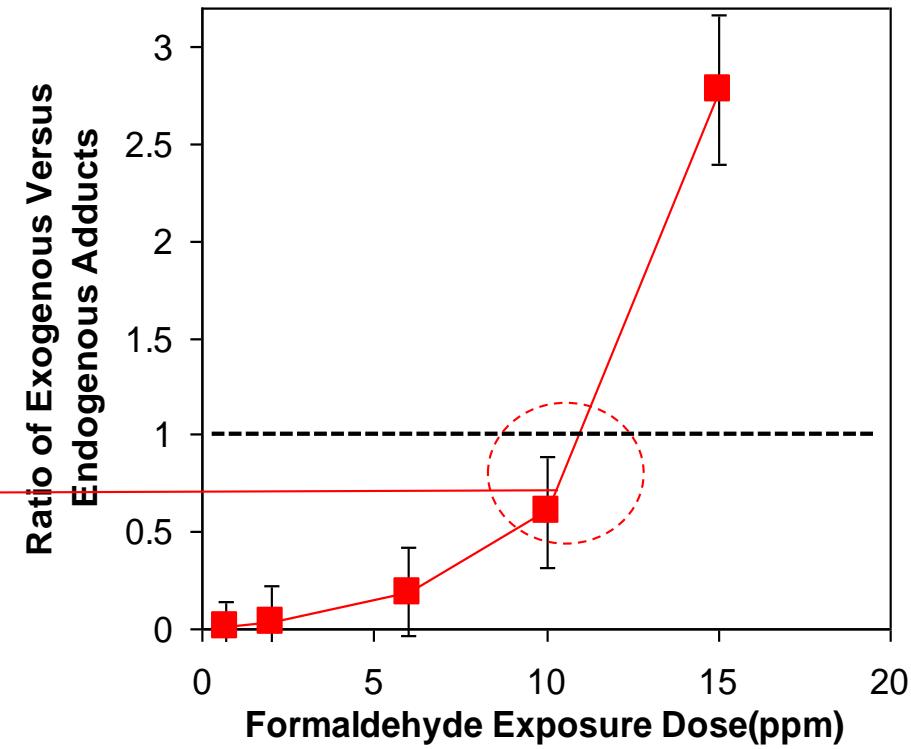
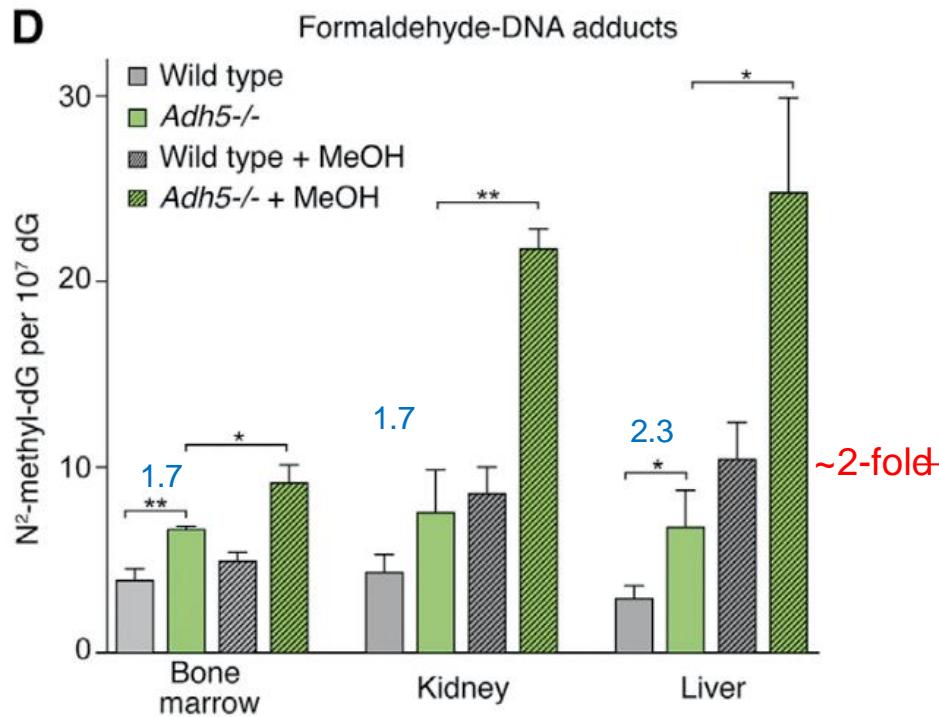
ADH5 Protects Against Exogenous FA-DNA Adducts

ADH5 Protects Against Exogenous FA-DNA Adducts

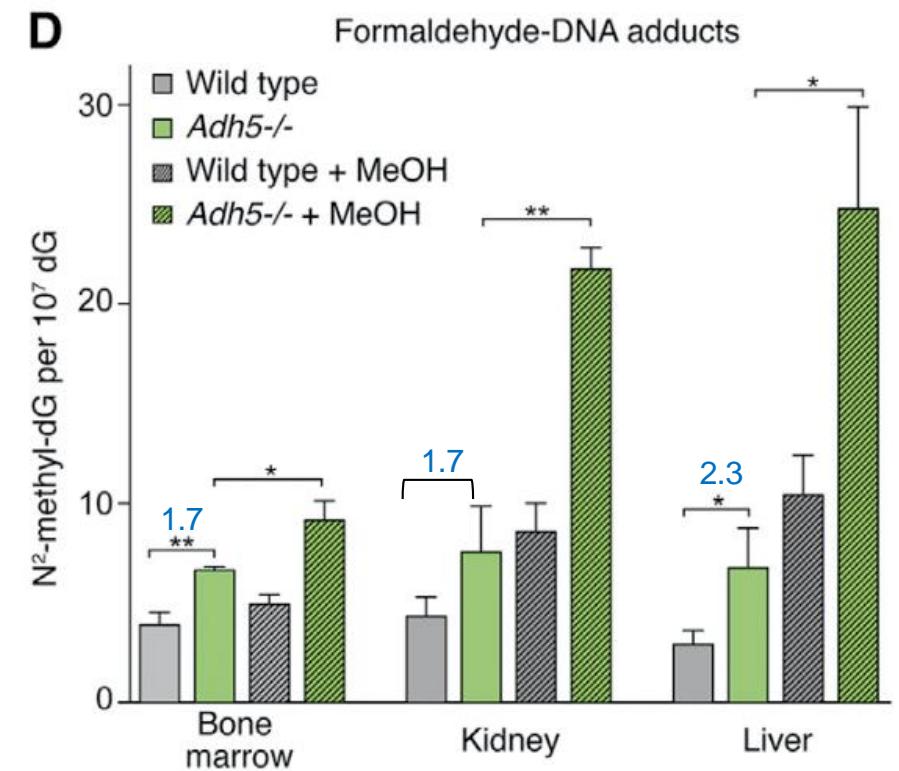


Pontel et al. (2015)

ADH5 Protects Against Exogenous FA-DNA Adducts

Pontel et al. (2015)

FA-DNA Adducts in $Adh5^{-/-}$ Mice Are Comparable to 6-10 ppm Formaldehyde Exposure


FA-DNA Adducts in $Adh5^{-/-}$ Mice Are Comparable to 6-10 ppm Formaldehyde Exposure

Is there other evidence of genotoxicity?

ADH5 Protects Against Exogenous FA-DNA Adducts

- $Adh5^{-/-}$ mice did not exhibit increased γ -H2AX activity in other assays
- $Adh5^{-/-}$ mice did not exhibit increased nuclear aberrations in other assays

Adh5^{-/-} Mice Do Not Exhibit Increased Mutant Frequency

Carcinogenesis vol.34 no.5 pp.984–989, 2013
doi:10.1093/carcin/bg3031
Advance Access publication January 25, 2013

S-nitrosoglutathione reductase deficiency increases mutagenesis from alkylation in mouse liver

James Leung, Wei Wei and Limin Liu*

Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA

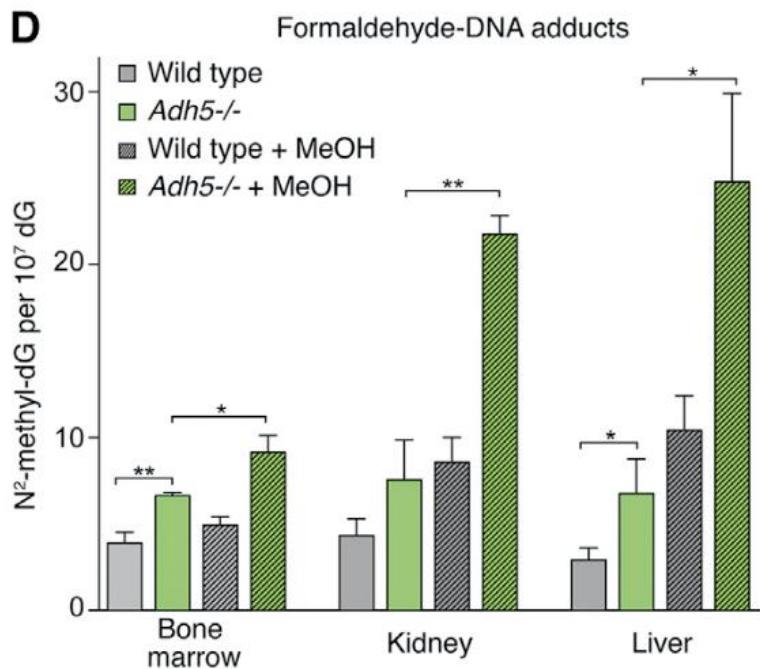
*To whom correspondence should be addressed: 513 Parnassus Avenue, HSE-201J, San Francisco, CA 94143. Tel: +415-476-1466; Fax: +415-502-4995; Email: Limin.Liu@ucsf.edu

In human hepatocellular carcinoma (HCC) and many other cancers, somatic point mutations are highly prevalent, yet the mechanisms critical in their generation remain poorly understood. S-nitrosoglutathione reductase (GSNOR), a key regulator of protein S-nitrosylation, is frequently deficient in human HCC. Targeted deletion of the GSNOR gene in mice can reduce the activity of the DNA repair protein O^6 -alkylguanine-DNA alkyltransferase (AGT) and promote both carcinogen-induced and spontaneous HCC. In this study, we report that following exposure to the environmental carcinogen diethylnitrosamine, the mutation frequency of a transgenic reporter in the liver of GSNOR-deficient mice (GSNOR^{-/-}) is significantly higher than that in wild-type control. In wild-type mice, diethylnitrosamine treatment does not significantly increase the frequency of the transition from G:C to A:T, a mutation deriving from diethylnitrosamine O^6 -ethylation that is mainly repaired by AGT. In contrast, the frequency of this transition from diethylnitrosamine is increased ~20 times in GSNOR^{-/-} mice. GSNOR deficiency also significantly increases the frequency of the transition from A:T to T:A, a mutation not affected by AGT. GSNOR deficiency in our experiments does not significantly affect either the frequencies of the other diethylnitrosamine-induced point mutations or hepatocyte proliferation. Thus, GSNOR deficiency, through both AGT-dependent and AGT-independent pathways, significantly raises the rates of specific types of DNA mutations. Our results demonstrate a critical role for GSNOR in maintaining genomic integrity in mice and support the hypothesis that GSNOR deficiency is an important cause of the widespread mutations in human HCC.

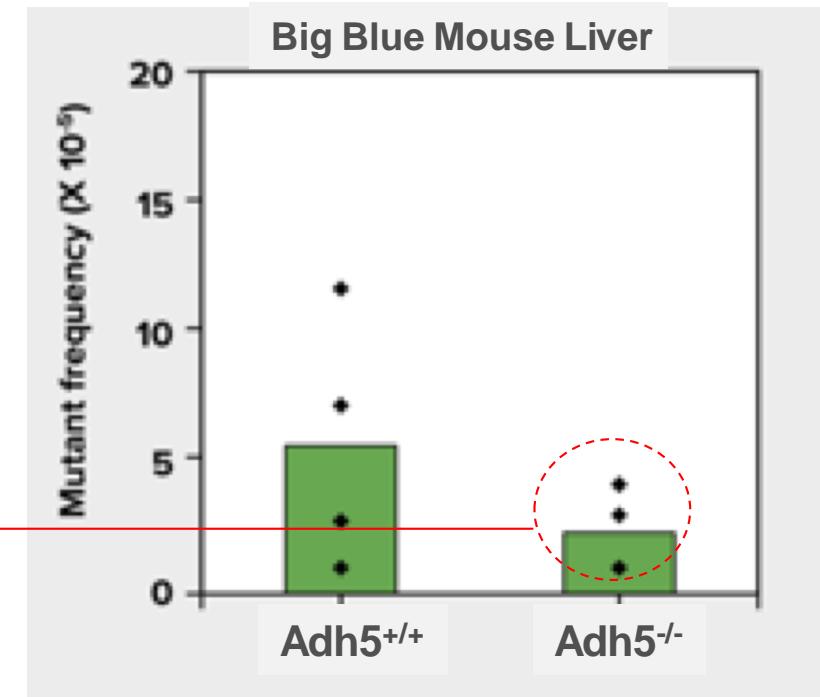
Introduction

DNA sequencing of cancer genomes has revealed remarkably large numbers of somatically acquired mutations in many human cancers (1). These mutations, occurring in both protein-coding and other regions throughout the cancer genomes, are mostly single-nucleotide substitutions. There are for instance over 11 000 somatic substitutions in a typical hepatocellular carcinoma (HCC) (2). The genes affected by the somatic mutations are highly heterogeneous (2–4), and mutational heterogeneity is also substantial within individual tumors (1). The characteristic abundance and substantial heterogeneity of somatic mutations in cancer genomes have profound implications in both our perspective of carcinogenesis and therapeutic approaches to cancer. However, defects in DNA repair systems have only been described in limited cancer incidences, and the causes and mechanisms of the somatic mutations remain largely unknown in HCC and many other cancers.

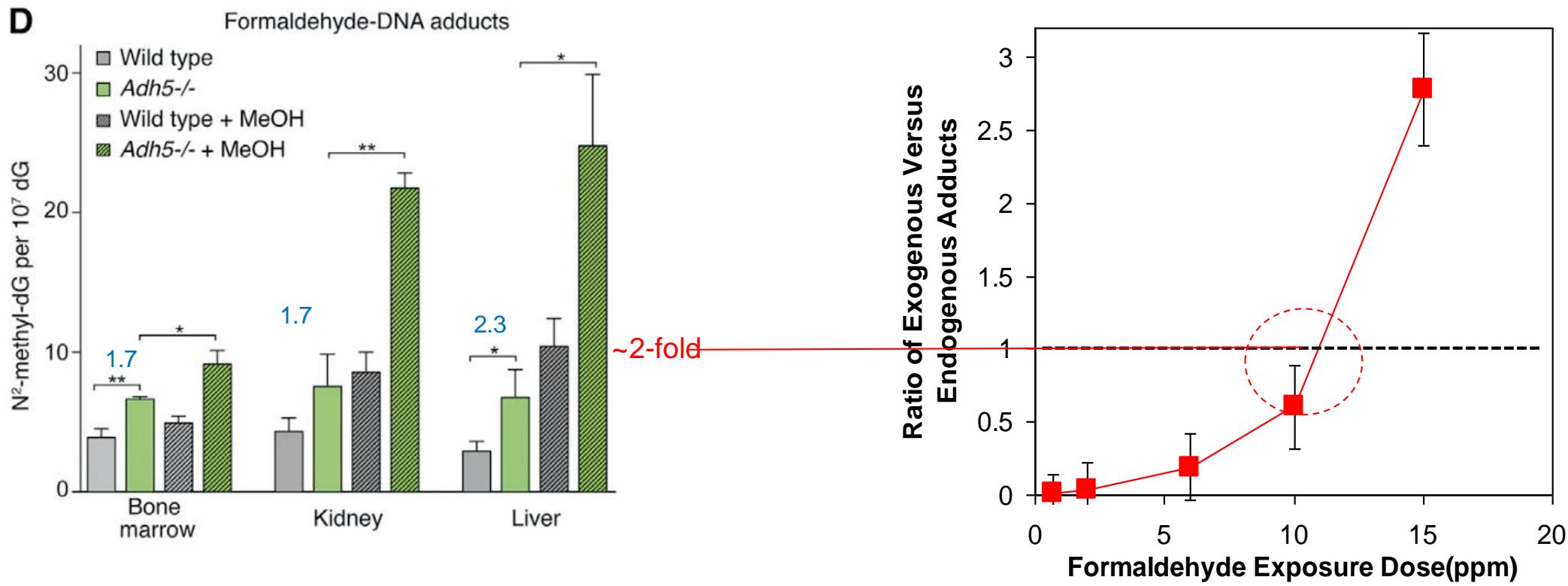
Abbreviations: AGT, O^6 -alkylguanine-DNA alkyltransferase; DEN, diethylnitrosamine; GSNOR, S-nitrosoglutathione reductase; HCC, hepatocellular carcinoma; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NO, nitric oxide.


Human HCC, the third leading cause of cancer deaths worldwide, develops mostly in the context of chronic viral hepatitis (5). Inducible nitric oxide synthase (iNOS), a key mediator of innate immune response and inflammation, is often increased both in HCC cells and in the hepatocytes of patients with chronic viral hepatitis and other diseases that predispose to HCC (6–9). Nitric oxide (NO) affects functions of a wide range of proteins—including many important to tumorigenesis—through S-nitrosylation, the covalent modification of cysteine thiol (10). S-nitrosylation is not only influenced by NOS activities but is also prominently regulated by S-nitrosoglutathione reductase (GSNOR), a major denitrosylase (11–13). The human GSNOR gene (ADH5) is located at -4q23, a region in which chromosomal deletion occurs most frequently in HCC (14–17). We showed that the abundance and activity of GSNOR were significantly decreased in cancer samples from ~50% of patients with HCC (18). Interestingly, gene-expression profiling showed that both GSNOR (ADH5) deficiency and iNOS overexpression in the liver are closely associated with *de novo* hepatocarcinogenesis after tumor resection and a poor prognosis in HCC patients (19). Thus, excessive S-nitrosylation from GSNOR deficiency or concurrent iNOS overexpression in the liver may contribute causally to human HCC.

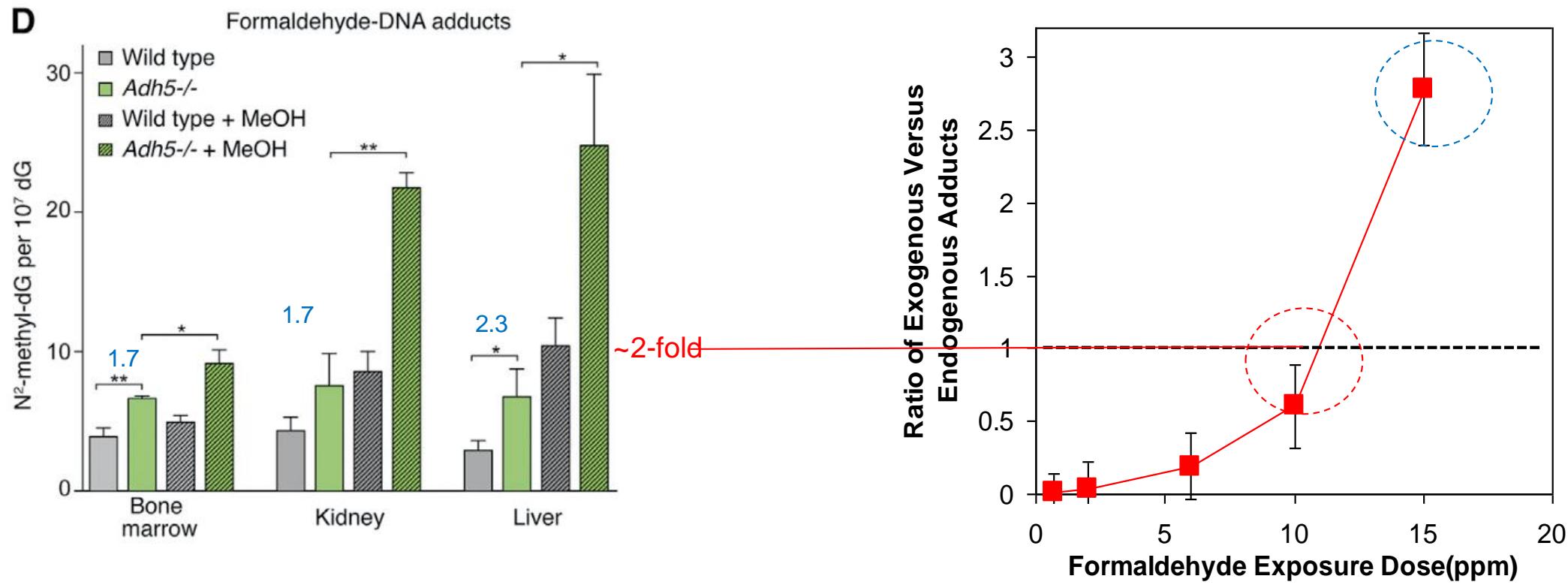
Recent studies using a mouse line with targeted deletion of the GSNOR gene demonstrated that S-nitrosylation from GSNOR deficiency inactivates the key DNA repair protein O^6 -alkylguanine-DNA alkyltransferase (AGT; also known as O^6 -methylguanine-DNA-methyltransferase) and promotes HCC (18,20). O^6 -alkylguanines in DNA are produced by alkylating *N*-nitros compounds, including diethylnitrosamines, which are widely present in the environment and can also be formed endogenously (21–23). O^6 -alkylguanines are mispaired by DNA polymerases to thymine during DNA replication, and the O^6 -alkylguanine-T mispairing, through a further round of DNA replication, can result in G:C to A:T mutations (22). Mutagenic O^6 -alkylguanines are repaired primarily by AGT (24) although repair of O^6 -alkylguanines might be affected by nucleotide excision repair (25). AGT is important for protection against HCC (26–28). We showed that during inflammatory responses following intraperitoneal injection of diethylnitrosamine (DEN) lipopolysaccharide (LPS), GSNOR deficiency resulted in S-nitrosylation, ubiquitination and proteasomal degradation of AGT, leading to its significant reduction in livers of GSNOR^{-/-} mice (18). Consequently, the repair of carcinogenic O^6 -ethylguanines in the livers of DEN-challenged GSNOR^{-/-} mice was impaired. GSNOR^{-/-} mice were found to be very susceptible to both spontaneous and DEN-induced HCC. Predisposition to HCC, S-nitrosylation and depletion of AGT, and accumulation of O^6 -ethylguanines due to GSNOR deficiency were remarkably all relieved by conditional deletion of the iNOS gene in GSNOR^{-/-} mice, further underscoring the critical role of iNOS-derived S-nitrosylation in AGT activation and liver carcinogenesis in GSNOR^{-/-} mice (18). Moreover, hepatocyte-specific deletion of GSNOR caused nitrosative inactivation of liver AGT and increased mortality from DEN (20), demonstrating the importance of GSNOR regulation of S-nitrosylation in liver parenchymal cells. S-nitrosylation may affect DNA repair pathways other than AGT (29), and diethylnitrosamines can cause a number of mutagenic DNA alkylations in addition to O^6 -alkylguanines (30). NO and related reactive nitrogen species at high levels may also damage DNA directly (31). However, it is unknown whether GSNOR deficiency *in vivo* affects the rate or spectrum of DNA mutation.


To examine the impact of GSNOR deficiency on DNA mutations, we employed Big Blue transgenic mice, a well-established system for detecting DNA mutations *in vivo* (32), and measured the rates of both spontaneous and DEN-induced mutations in livers of GSNOR^{-/-} Big Blue double-transgenic mice. We found that after DEN treatment,

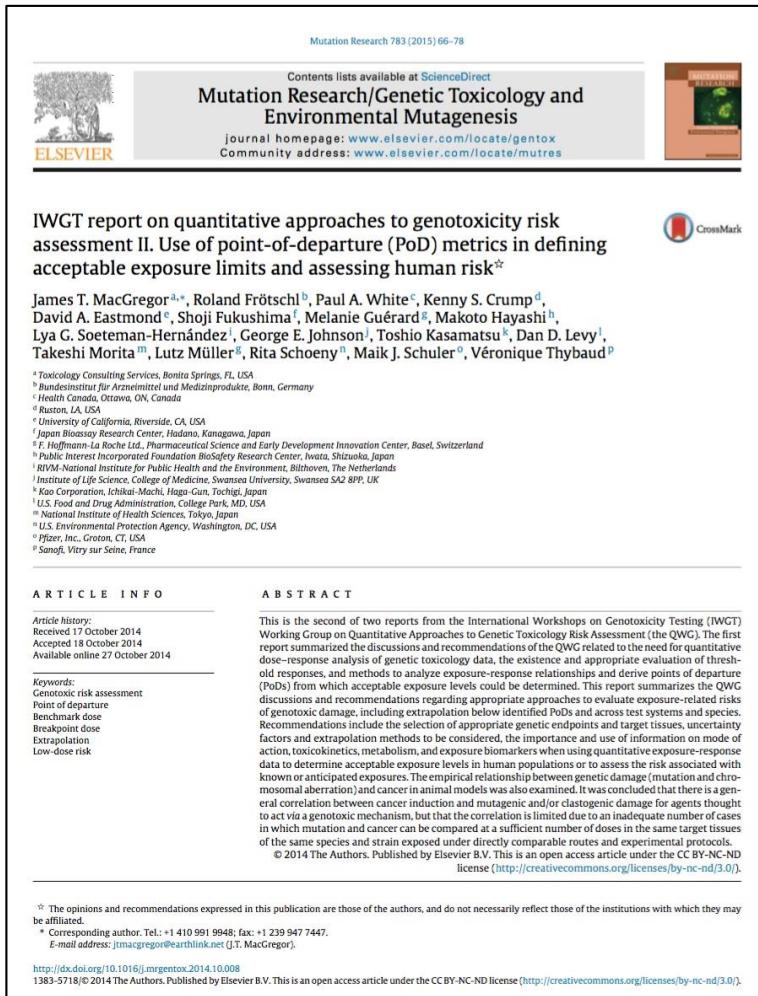
Bridging Across Knockout Studies: 2-fold Increases in Adducts do not Increase Mutant Frequency



Pontel et al. (2015)


Leung et al. (2013)

FA-DNA Adducts in *Adh5^{-/-}* Mice Are Comparable to 6-10 ppm Formaldehyde Exposure


- Exogenous adduct levels associated with 2x (1:1 ratio) may not be mutagenic (red circle)

FA-DNA Adducts in Adh5^{-/-} Mice Are Comparable to 6-10 ppm Formaldehyde Exposure

- Exogenous adducts levels associated with 2x (1:1 ratio) may not be mutagenic (red circle)
- What data are available for higher adduct levels (blue circle)?

IWGT Recommendations for In Vivo Genotoxicity Assays

Mutation Research 783 (2015) 66–78

Contents lists available at ScienceDirect

Mutation Research/Genetic Toxicology and Environmental Mutagenesis

journal homepage: www.elsevier.com/locate/genotox

Community address: www.elsevier.com/locate/mutres

IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk[☆]

James T. MacGregor^{a,*}, Roland Frötschl^b, Paul A. White^c, Kenny S. Crump^d,
David A. Eastmond^e, Shoji Fukushima^f, Melanie Guérard^g, Makoto Hayashi^h,
Lya G. Soeteman-Hernándezⁱ, George E. Johnson^j, Toshio Kasamatsu^k, Dan D. Levy^l,
Takeshi Morita^m, Lutz Müllerⁿ, Rita Schoenyⁿ, Maik J. Schuler^o, Véronique Thybaud^p

^a Toxicology Consulting Services, Bonita Springs, FL, USA
^b Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
^c Health Canada, Ottawa, ON, Canada
^d Ruston, LA, USA
^e University of California, Riverside, CA, USA
^f Japan Chemicals Research Institute, Hadano, Kanagawa, Japan
^g F. Hoffmann-La Roche Ltd., Pharmaceutical Sciences and Early Development Innovation Center, Basel, Switzerland
^h Public Interest Incorporated Foundation BioSafety Research Center, Ibaraki, Shizuoka, Japan
ⁱ RIVM-National Institute for Public Health and the Environment, Bilthoven, The Netherlands
^j Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
^k Kao Corporation, Ibaraki, Ibaraki, Japan
^l U.S. Environmental Protection Agency, Washington, DC, USA
^m National Institute of Health Sciences, Tokyo, Japan
ⁿ U.S. Environmental Protection Agency, Washington, DC, USA
^o Pfizer, Inc., Groton, CT, USA
^p Sanofi, Vitry sur Seine, France

ARTICLE INFO

Article history:
Received 17 October 2014
Accepted 18 October 2014
Available online 27 October 2014

Keywords:
Genotoxic risk assessment
Point of departure
Benchmark dose
Breakpoint dose
Extrapolation
Low-dose risk

ABSTRACT

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicity data in order to appropriately evaluate the risk of threshold, old paradigm and new paradigm acceptable exposure-response relationships and derive metrics of dose-response (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/3.0/>).

[☆] The opinions and recommendations expressed in this publication are those of the authors, and do not necessarily reflect those of the institutions with which they may be affiliated.

* Corresponding author. Tel.: +1 410 991 9948; fax: +1 239 947 7447.
E-mail address: jtmacgregor@earthlink.net (J.T. MacGregor).

<http://dx.doi.org/10.1016/j.mrgentox.2014.10.016> 1383-5718/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/3.0/>).

- Ideally conducted in a proliferative tissue
 - Bone marrow (hematopoietic)
 - Colon
 - Young liver
- Ideally at site of carcinogenic action
 - **Nasal epithelium for FA**
- Ideally in tissue with high dosimetry (e.g. site of contact)
 - **Nasal epithelium for FA**

Assessment of Micronucleus Formation in Nasal Epithelium

Mutation Research 721 (2011) 127–135

Contents lists available at ScienceDirect
Mutation Research/Genetic Toxicology and Environmental Mutagenesis
journal homepage: www.elsevier.com/locate/genotox
Community address: www.elsevier.com/locate/mutres

Analysis of micronuclei, histopathological changes and cell proliferation in nasal epithelium cells of rats after exposure to formaldehyde by inhalation

Günter Speit^{a,*}, Petra Schütz^a, Irmgard Weber^b, Lan Ma-Hock^b, Wolfgang Kaufmann^b, Hein-Peter Gelbke^c, Stefan Durrer^b

^a Universität Ulm, Institut für Humangenetik, D-89080 Ulm, Germany
^b BASF SE, Department of Product Safety, D-67065 Ludwigshafen, Germany
^c CinTox, D-67346 Speyer, Germany

ARTICLE INFO

Article history:
Received 27 September 2010
Received in revised form
23 December 2010
Accepted 5 January 2011
Available online 25 January 2011

Keywords:
Nasal epithelial cells
Micronucleus test
Histopathology
Cell proliferation

ABSTRACT

The frequencies of micronuclei (MN), histopathological changes and cell proliferation were determined in the nasal epithelium of male Fischer-344 rats after exposure to formaldehyde (FA) by whole-body inhalation for four weeks (6 h/day, 5 days/week). Groups of 12 rats each were exposed to the target concentrations of 0, 0.5, 1, 2, 6, 10 and 15 ppm. The micronucleus test (MNT) was performed with nasal epithelial cells prepared from six animals per group. Two thousand cells per animal were analysed for the presence of MN. The other six rats per group were subcutaneously implanted with osmotic pumps containing cyclophosphamide (CP, 20 mg/kg) to serve as positive control. Parallel to the experiments from the nasal cavity (four levels) of these animals for histopathology and cell-proliferation measurements. The frequency of cells with MN was not increased in any of the groups. However, there was also no induction of MN in nasal cells of rats exposed to a single dose of cyclophosphamide (CP, 20 mg/kg) by gavage and analysed 3, 7, 14 or 28 days after the treatment. In contrast, nasal epithelial cells from rats exposed to 10 or 15 ppm FA vapour showed clear site-specific pathological changes (focal epithelial degeneration, inflammation and squamous metaplasia) in a decreasing gradient (anterior to posterior). Analysis of side and dorsal nasal epithelial cells revealed a dose-dependent increase in proliferation (unit length cell indices, ULI) after exposure to 6 ppm and higher. No treatment-related effects were measured after exposure to 0.5, 1 and 2 ppm. When comparing the cell-proliferation rate of normal epithelium with that of directly adjacent metaplastic epithelium, no consistent pattern was found; depending on the location, cell proliferation of normal epithelia was either higher or lower. Our results support previous findings demonstrating local cytotoxic effects in the nose of rats after inhalation of FA. However, induction of MN in the nasal epithelium as an indicator of a mutagenic effect was not seen. Because only limited experience exists for the MNT with rat nasal epithelial cells, this result has to be interpreted with great care. The contribution of mutagenicity to FA's carcinogenicity in the nasal epithelium remains unclear.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Chronic exposures to high concentrations (≥ 6 ppm) of formaldehyde (FA) induced cell proliferation, squamous metaplasia and squamous cell carcinomas in Fischer-344 (F344) rats [1–3]. FA is genotoxic, inducing DNA-protein crosslinks (DPX) and other types of DNA adduct in the nasal mucosa of F344 rats [4–6]. Whereas regenerative cell proliferation is considered a key event in FA-induced carcinogenesis, the relative importance of genotoxic and mutagenic effects still needs to be elucidated [7]. DPX are generally assumed to be the most relevant primary DNA alterations induced by FA. DPX are efficiently removed in all mammalian cells studied so far, but incomplete repair of DPX can lead to the formation of mutations [8]. Based on *in vitro* studies with proliferating mammalian cells, FA very efficiently induces chromosomal effects such as chromosome aberrations and micronuclei (MN) [9,10]. Consequently, chromosomal effects such as MN seem to be one of the most sensitive genetic endpoints for the detection of FA-induced mutagenicity. With regard to the induction of gene mutations, FA seems to be a poor inducer of point mutations and other small intragenic mutations as measured by the *Hprt* mammalian cell gene-mutation tests [9,11]. Various studies using the *TK^{-/-}* gene-mutation tests clearly indicated that the majority of FA-induced gene mutations are actually the consequence of small-scale chromosomal rearrangements (e.g., deletions or recombinations) [9,11,12].

* Corresponding author. Tel.: +49 731 500 65440; fax: +49 731 500 65402.
E-mail address: guenter.speit@uni-ulm.de (G. Speit).

1383-5718/\$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.mrgentox.2011.01.008

- **Exposures: 0, 0.5, 1, 2, 6, 10, 15 ppm**
- **6 hr/day, 5d/wk x 4-wk**
- **Proliferation increased at ≥ 6 ppm**
- **No increases in nasal cell MN**
- **Limitations**
 - No nasal MN by CP (positive control)
 - More experience needed with nasal MN

Assessment of Micronucleus Formation in Nasal Epithelium

Mutation Research 721 (2011) 127–135

Contents lists available at ScienceDirect
Mutation Research/Genetic Toxicology and Environmental Mutagenesis
journal homepage: www.elsevier.com/locate/genotox
Community address: www.elsevier.com/locate/mutres

Analysis of micronuclei, histopathological changes and cell proliferation in nasal epithelium cells of rats after exposure to formaldehyde by inhalation

Günter Speit^{a,*}, Petra Schütz^a, Irmgard Weber^b, Lan Ma-Hock^b, Wolfgang Kaufmann^b, Heinz-Peter Gelbke^c, Stefan Durrer^b

^a Universität Ulm, Institut für Humangenetik, D-89080 Ulm, Germany
^b BASF SE, Department of Product Safety, D-67065 Ludwigshafen, Germany
^c CinTox, D-67346 Speyer, Germany

ARTICLE INFO

Article history:
Received 27 September 2010
Received in revised form
23 December 2010
Accepted 5 January 2011
Available online 25 January 2011

Keywords:
Nasal epithelial cells
Micronucleus test
Histopathology
Cell proliferation

ABSTRACT

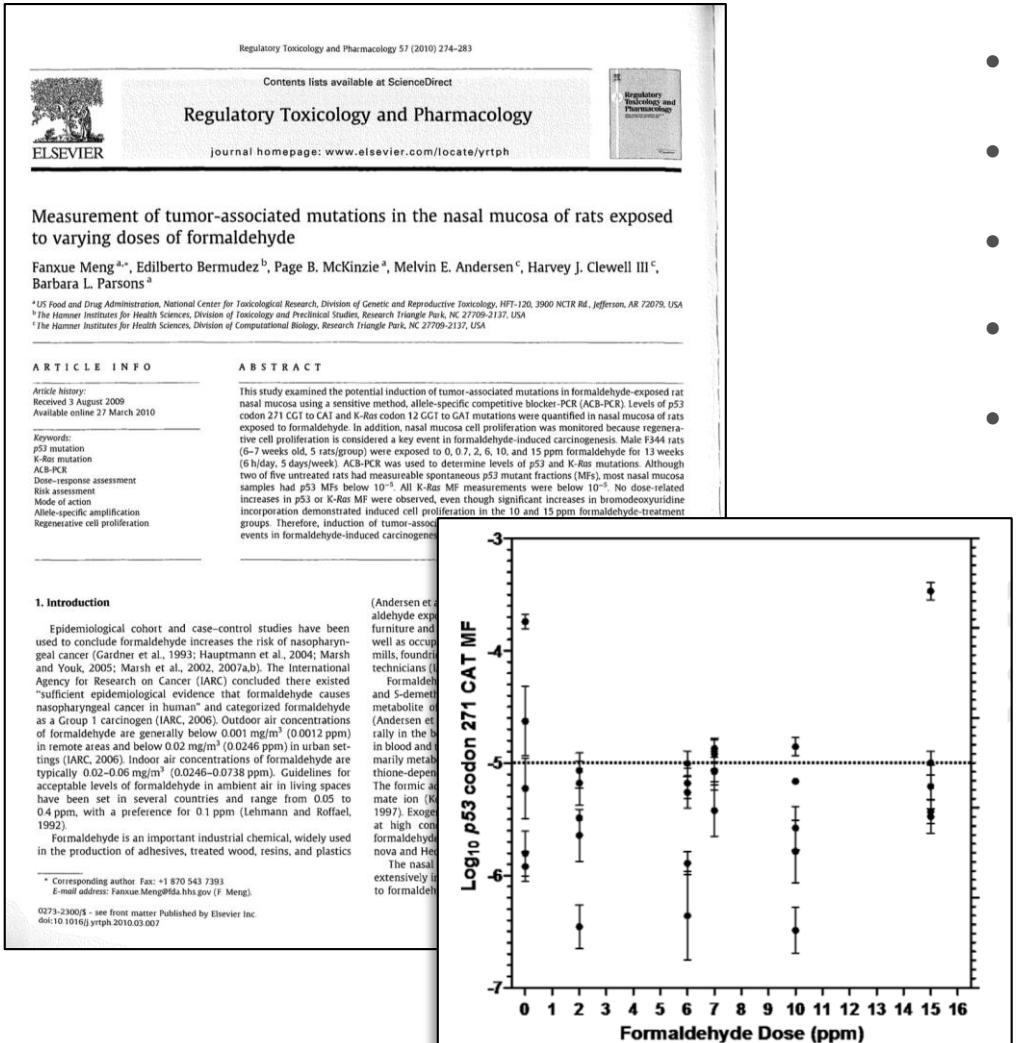
The frequencies of micronuclei (MN), histopathological changes and cell proliferation were determined in the nasal epithelium of male Fischer-344 rats after exposure to formaldehyde (FA) by whole-body inhalation for four weeks (6 h/day, 5 days/week). Groups of 12 rats each were exposed to the target concentrations of 0, 0.5, 1, 2, 6, 10 and 15 ppm. The micronucleus test (MNT) was performed with nasal epithelial cells prepared from six animals per group. Two thousand cells per animal were analysed for the presence of MN. The other six rats per group were subcutaneously implanted with osmotic pumps containing cyclophosphamide (CP, 20 mg/kg) and analysed for MN. The nasal epithelial cells were removed from the nasal cavity (four levels) of these animals for histopathology and cell-proliferation measurements. The frequency of cells with MN was not increased in any of the groups. However, there was also no induction of MN in nasal cells of rats exposed to a single dose of cyclophosphamide (CP, 20 mg/kg) by gavage and analysed 3, 7, 14 or 28 days after the treatment. In contrast, nasal epithelial cells from rats exposed to 10 or 15 ppm FA vapour showed clear site-specific pathological changes (focal epithelial degeneration, inflammation and squamous metaplasia) in a decreasing gradient (anterior to posterior). Analysis of side and 90° epithelial cell proliferation revealed a dose-dependent effect on proliferation (unit length cell indices, ULI) after exposure to 6 ppm and higher. No treatment-related effects were measured after exposure to 0.5, 1 and 2 ppm. When comparing the cell-proliferation rate of normal epithelium with that of directly adjacent metaplastic epithelium, no consistent pattern was found; depending on the location, cell proliferation of normal epithelia was either higher or lower. Our results support previous findings demonstrating local cytotoxic effects in the nose of rats after inhalation of FA. However, induction of MN in the nasal epithelium as an indicator of a mutagenic effect was not seen. Because only limited experience exists for the MNT with rat nasal epithelial cells, this result has to be interpreted with great care. The contribution of mutagenicity to FA's carcinogenicity in the nasal epithelium remains unclear.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

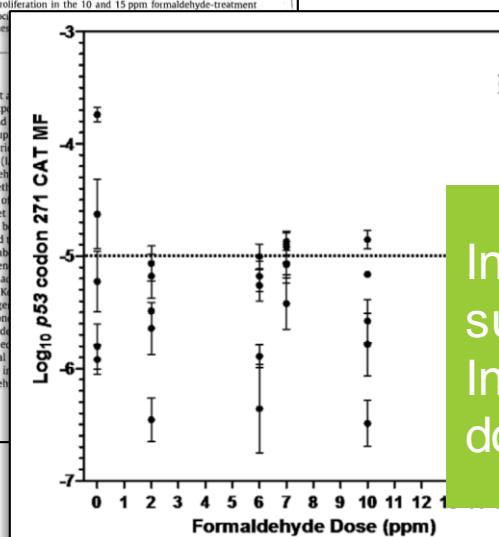
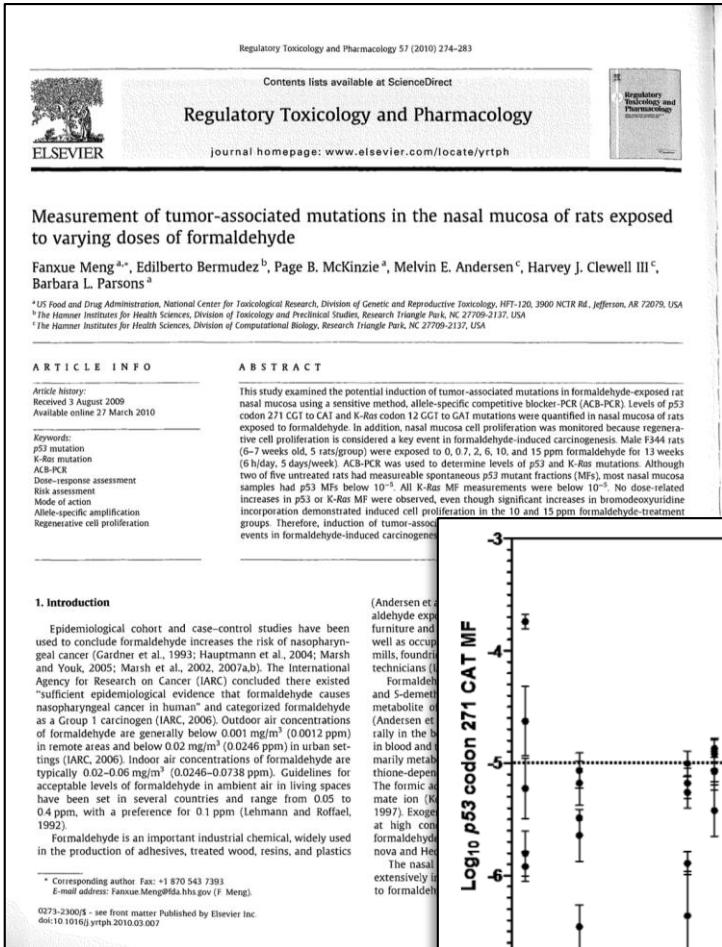
Chronic exposures to high concentrations (≥ 6 ppm) of formaldehyde (FA) induced cell proliferation, squamous metaplasia and squamous cell carcinomas in Fischer-344 (F344) rats [1–3]. FA is genotoxic, inducing DNA-protein crosslinks (DPX) and other types of DNA adduct in the nasal mucosa of F344 rats [4–6]. Whereas regenerative cell proliferation is considered a key event in FA-induced carcinogenesis, the relative importance of genotoxic and mutagenic effects still needs to be elucidated [7]. DPX are generally assumed to be the most relevant primary

DNA alterations induced by FA. DPX are efficiently removed in all mammalian cells studied so far, but incomplete repair of DPX can lead to the formation of mutations [8]. Based on *in vitro* studies with proliferating mammalian cells, FA very efficiently induces chromosomal effects such as chromosome aberrations and micronuclei (MN) [9,10]. Consequently, chromosomal effects such as MN seem to be one of the most sensitive genetic endpoints for the detection of FA-induced mutagenicity. With regard to the induction of gene mutations, FA seems to be a poor inducer of point mutations and other small intragenic mutations as measured by the *Hprt* mammalian cell gene-mutation tests [9,11]. Various studies using the *TK^{-/-}* gene-mutation tests clearly indicated that the majority of FA-induced gene mutations are actually the consequence of small-scale chromosomal rearrangements (e.g., deletions or recombinations) [9,11,12].


* Corresponding author. Tel.: +49 731 500 65440; fax: +49 731 500 65402.
E-mail address: guenter.speit@uni-ulm.de (G. Speit).

1383-5718/\$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.mrgentox.2011.01.008

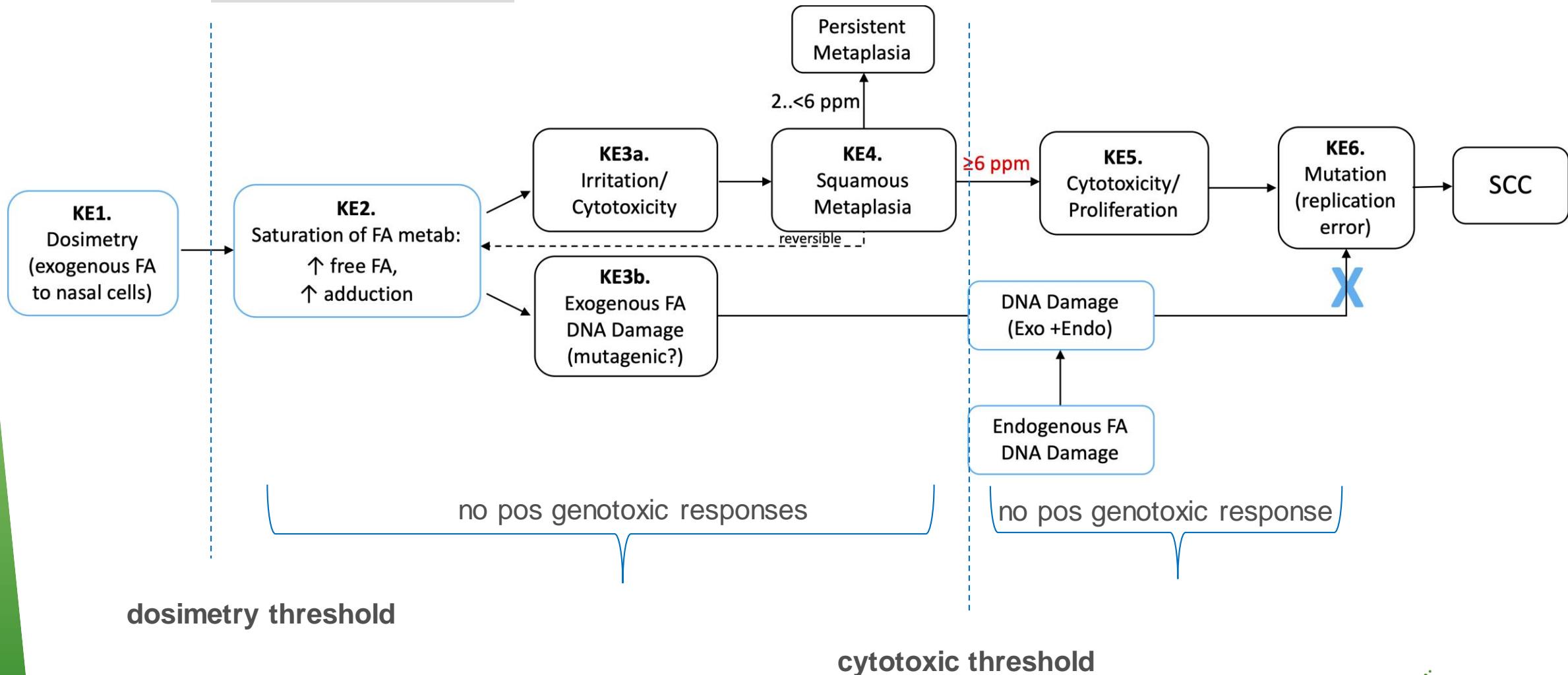
- **Exposures: 0, 0.5, 1, 2, 6, 10, 15 ppm**
- **6 hr/day, 5d/wk x 4-wk**
- **Proliferation increased at ≥ 6 ppm**
- **No increases in nasal cell MN**
- **Limitations**
 - No nasal MN by CP (positive control)
 - More experience needed with nasal MN



Inability to detect ↑MN in highly proliferative tissue does not support a genotoxic MOA.
Inability to detect ↑MN amongst increased FA-DNA adducts does not support a genotoxic MOA.

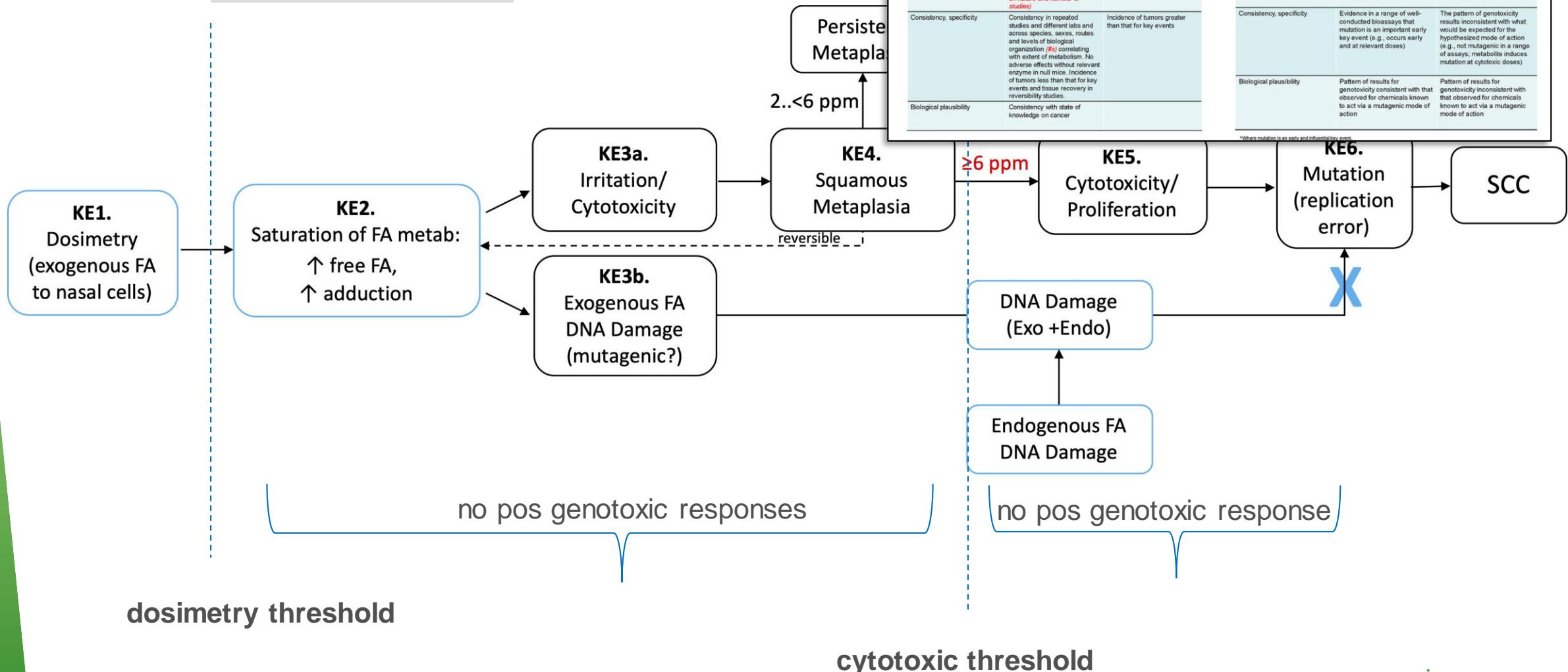
Assessment of Mutant Frequency in Nasal Epithelium

- **Exposures: 0, 0.7, 2, 6, 10, 15 ppm**
- **6 hr/day, 5d/wk x 13-wk**
- **Proliferation increased at ≥ 6 ppm**
- **No increases in nasal tissue MF**
- **Limitations**
 - **Two targets**
 - *p53 – measured due to previous reports of p53 mutations in formaldehyde-induced SCC*
 - *K-ras – measured due to potential role in nasal carcinogenesis*

Assessment of Mutant Frequency in Nasal Epithelium


- **Exposures: 0, 0.7, 2, 6, 10, 15 ppm**
- **6 hr/day, 5d/wk x 13-wk**
- **Proliferation increased at ≥ 6 ppm**
- **No increases in nasal tissue MF**
- **Limitations**

- **Two targets**
 - *p53 – measured due to previous reports of p53 mutations in formaldehyde-induced SCC*
 - *K-ras – measured due to potential role in nasal*


Inability to detect ↑MF in highly proliferative tissue does not support a genotoxic MOA.

Inability to detect ↑MF amongst increased FA-DNA adducts does not support a genotoxic MOA.

Updated MOA (2020)

Updated MOA (2020)

Summary

- MOA proposed in McGregor et al. (2006) was consistent with a threshold
 - Some uncertainty of the role of genotoxicity
 - Data published after 2006 address these uncertainties
- Increases in exogenous FA-DNA adducts are not detected below 0.3 ppm
- 2-fold increases in FA-DNA adducts does not appear genotoxic
- Several studies published after 2006 have examined the in vivo genotoxicity of formaldehyde in rats up to 15 ppm
 - Negative for clastogenic DNA damage (MN)
 - Negative for mutagenic damage (MF)
- Data published since 2006 further support a threshold MOA

Acknowledgements

Co-authors on Updated MOA

- Robinan Gentry, Ramboll
- Seneca Fitch, ToxStrategies
- Kun Lu, UNC
- Harvey Clewell, Ramboll

Funding

- Foundation for Chemistry Research & Initiatives (FCRI), a tax-exempt organization established by the American Chemistry Council